Low-noise, chip-based optical wavelength converter demonstrated

Sep 06, 2012 by Kartik Srinivasan
Low-noise, chip-based optical wavelength converter demonstrated
Scanning electron micrograph of the cross-section of a silicon nitride waveguide designed for the low-noise frequency conversion with a simulation of the device's optical field profile superimposed.

(Phys.org)—Researchers from the NIST Center for Nanoscale Science and Technology have demonstrated a low-noise device for changing the wavelength of light using nanofabricated waveguides created on a silicon-based platform using standard planar fabrication technology.

conversion is an important resource for applications in both classical and : it can connect physical systems operating at different wavelengths, and facilitate improved light detection by converting light to wavelengths for which highly sensitive detectors are available. However, for many such applications the conversion process must not introduce additional noise. The researchers were able to demonstrate noise-free using waveguides fabricated on a .

These waveguides were designed based on electromagnetic simulations to determine an appropriate device geometry for a process called four-wave-mixing Bragg scattering, where an input signal field is converted to an output field whose frequency is shifted from the original by an amount equal to the difference in the frequencies of two applied pump fields. Measurements show conversion efficiencies in these devices as high as a few percent, approaching the levels needed for some applications, and with no excess noise added during the conversion process.

These new noise-free frequency converters are dramatically smaller than the nonlinear crystals and optical fibers used in previous work (by several orders of magnitude), and can be created in arrays and integrated with other on-chip devices using scalable silicon-based fabrication methods. Future work will focus on increasing the conversion efficiency levels by optimizing the waveguide geometry and incorporating the waveguides into optical resonators.

Explore further: Understanding spectral properties of broadband biphotons

More information: Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides, I. Agha, M. Davanco, B. Thurston, and K. Srinivasan, Optics Letters 37, 2997–2999 (2012).

add to favorites email to friend print save as pdf

Related Stories

Improved spectrometer based on nonlinear optics

Nov 12, 2008

Scientists at Stanford University and Japan's National Institute of Informatics have created a new highly sensitive infrared spectrometer. The device converts light from the infrared part of the spectrum to the visible ...

Recommended for you

Understanding spectral properties of broadband biphotons

20 hours ago

Advances in quantum optical technologies require scientists to control and exploit the properties of so-called biphotons. Biphotons occur when two photons become 'quantum-entangled' - spatially separate entities ...

Scientists build a nanolaser using a single atomic sheet

Mar 24, 2015

University of Washington scientists have built a new nanometer-sized laser—using the thinnest semiconductor available today—that is energy efficient, easy to build and compatible with existing electronics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.