Electron resonances could greatly enhance the response of optical chip photodetectors

March 28, 2011 By Lee Swee Heng
Scanning electron microscopy image of the germanium-silicon-based photodetector with metal contacts to induce plasmonic light enhancement. Credit: 2010 AIP

Optical chips are the latest innovation in silicon technology with the potential to revolutionize telecommunications. Their operation relies on several key components, including light-emitting devices, waveguides and photodetectors. Engineers are looking for ways to miniaturize these components without sacrificing the data-processing speed of the integrated optical chips. Patrick Guo-Qiang Lo and co-workers at the A*STAR Institute of Microelectronics have now fabricated a highly sensitive photodetector by exploiting the enhancement effects of electron resonances that occur at metal contacts.

Surface plasmon polaritons—the collective movements of at the surface of metals—are known to enhance and focus electromagnetic waves in their vicinity. The plasmon effect has been studied extensively for its ability to enhance the performance of optical devices, but in this study the researchers applied the phenomenon to improved the sensitivity, and hence speed, of semiconductor detectors.

Photodetectors on a silicon chip are generally designed to pick up light arriving through silicon waveguides. The light travelling through the silicon waveguides is detected by germanium, another semiconductor, which is grown directly on top of the silicon structure. However, the sensitivity of the germanium detector needs to be enhanced considerably in order to increase the speed and reduce the footprint of the photodetector further.

Plasmonic resonances can easily enhance the sensitivity of this light detection. The researchers introduced plasmons by adding thin aluminum contacts on top of the device (pictured). The plasmonic effects in the metal films channel considerably more light from the silicon waveguide into the , with important implications for device performance. “The enhanced photodetection enables the use of smaller devices, which in turn means that the device speed can be increased considerably,” explains Lo.

The researchers demonstrate detection speeds of 37.6 picoseconds or faster, corresponding to a data transmission speed of 11.4 gigahertz—several orders of magnitude faster than that achievable by current broadband connections.

At the same time, these speeds still lag behind the full potential of these detectors. One of the reasons, says Lo, is loss that arises from the plasmonic resonances, which absorb some of the light and therefore reduce the amount of that arrives at the detector. “The response of the detector is lower than what we expected from our design,” says Lo. “Enhancing the plasmonic properties of the detector, for example through the design of different geometries, could alleviate such problems and enable a further miniaturization of photodetectors on chips.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Explore further: IMEC reports method to integrate plasmonic technology with state-of-the-art ICs

More information: Ren, F.-F. et al. Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector. Applied Physics Letters 97, 091102 (2010). dx.doi.org/10.1063/1.3485064

Related Stories

Going plasmonic in search of faster computing, communications

October 16, 2009

(PhysOrg.com) -- A team of European researchers has demonstrated some of the first commercially viable plasmonic devices, paving the way for a new era of high-speed communications and computing in which electronic and optical ...

High efficiency infrared photodetectors using gold nanorods

March 25, 2011

Toyohashi Tech researchers develop an innovative infrared photodetector exploiting ‘plasmon resonance’ at the surface of gold nanorods. This technology shows potential as the basis for the development of high efficiency ...

Recommended for you

Flexible ferroelectrics bring two material worlds together

January 17, 2017

Until recently, "flexible ferroelectrics" could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration ...

First-ever X-ray image capture of material defect process

January 17, 2017

From blacksmiths forging iron to artisans blowing glass, humans have for centuries been changing the properties of materials to build better tools – from iron horseshoes and swords to glass jars and medicine vials.

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.