Hydrogen beam injector guides plasma physics research

Sep 27, 2012 by Jill Sakai  
Hydrogen beam injector guides plasma physics research
The Madison Symmetric Torus gained new capabilities with the installation of a neutral beam injector.

(Phys.org)—The Madison Symmetric Torus, a leading piece of equipment in plasma physics research for more than 20 years, recently gained a new capability with the installation of a neutral beam injector.

The addition allows University of Wisconsin-Madison researchers to delve further into the basic properties of plasmas—hot gases of charged particles—which are important in astrophysics research as well as numerous more down-to-Earth applications such as , TVs and other displays, and development of fusion technology.

A new study published online this week in Physical Review Letters reports the first description of the effects of instabilities generated by injecting hot plasmas with beams of uncharged particles—generally hydrogen—in a type of device known as a reversed field pinch, or RFP.

The nature of those instabilities can help researchers understand how the beam particles interact with the plasma and their potential beneficial uses, says UW-Madison graduate student Jonathan Koliner, who led the study with UW physics professors Cary Forest and John Sarff. Paper co-authors include other colleagues at UW-Madison, the University of California at Los Angeles, and Oak Ridge National Laboratory.

Neutral beams have sometimes been used to heat plasmas and drive in another type of plasma device, called a tokamak. Other times, the effects are more problematic.

"Like throwing rocks into a pond generates ripples, these particles come in and generate ripples [in the plasma]. Those ripples can feed back on themselves and start to grow very big, and when the ripples get big enough they'll kick the particles out," says Koliner.

More work is needed to understand and, ultimately, control the bursts to harness the particles' energy rather than losing them from the plasma, he says. In addition, RFPs offer some advantages over tokamaks in studying basic plasma properties due to the way they contain and control plasmas. The beam on the Madison Symmetric Torus is the first on an RFP device and offers the first opportunity to characterize beam-generated instabilities in this type of plasma environment and compare them to those in tokamaks.

"Seeing what neutral beams can do in an RFP is a good way to figure out if you can use them to control [the plasma] in other ways in the future," Koliner says. "It's important first to lock down exactly what they do in all of the different possible plasma equilibria we can make in our machine. Once you figure out what they do, then you can come up with a plan."

Koliner and his colleagues are studying the particle bursts under several plasma conditions and operating modes to form the best possible picture of what the plasma looks like and how it is behaving in the different situations.

"The bursts themselves have illuminated a lot of what the beam is doing that has been somewhat mysterious, not perfectly understood up to this point," he says. "Knowing what these bursts do fills in a large piece of the picture."

Explore further: Mapping the optimal route between two quantum states

More information: plasma.physics.wisc.edu/viewpage.php?id=mst

Related Stories

With lithium, more is definitely better

Nov 10, 2011

A team of scientists working at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has found that increasing the amount of lithium coating in the wall of an experimental fusion reactor ...

Taming thermonuclear plasma with a snowflake

Nov 08, 2010

Physicists working on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory are now one step closer to solving one of the grand challenges of magnetic fusion research -- ...

Upping the power triggers an ordered helical plasma

Nov 02, 2009

If you keep twisting a straight elastic string, at some moment it starts kinking in a wild way. Something similar occurs when one increases the electrical current flowing in a magnetized plasma doughnut: it ...

Wave power could contain fusion plasma

Jan 10, 2011

Researchers at the University of Warwick’s Centre for Fusion Space and Astrophysics and the UK Atomic Energy Authority’s Culham Centre for Fusion Energy may have found a way to channel the flux and fury of a nuclear ...

Recommended for you

Refocusing research into high-temperature superconductors

4 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

9 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

9 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

M4dH4TT3r
1 / 5 (1) Oct 28, 2012
Ive been working on something similar that started with the change within a liquid hydrogen vaccume tube from the muon neutrino to the electron neutrino