Hydrogen beam injector guides plasma physics research

Sep 27, 2012 by Jill Sakai  
Hydrogen beam injector guides plasma physics research
The Madison Symmetric Torus gained new capabilities with the installation of a neutral beam injector.

(Phys.org)—The Madison Symmetric Torus, a leading piece of equipment in plasma physics research for more than 20 years, recently gained a new capability with the installation of a neutral beam injector.

The addition allows University of Wisconsin-Madison researchers to delve further into the basic properties of plasmas—hot gases of charged particles—which are important in astrophysics research as well as numerous more down-to-Earth applications such as , TVs and other displays, and development of fusion technology.

A new study published online this week in Physical Review Letters reports the first description of the effects of instabilities generated by injecting hot plasmas with beams of uncharged particles—generally hydrogen—in a type of device known as a reversed field pinch, or RFP.

The nature of those instabilities can help researchers understand how the beam particles interact with the plasma and their potential beneficial uses, says UW-Madison graduate student Jonathan Koliner, who led the study with UW physics professors Cary Forest and John Sarff. Paper co-authors include other colleagues at UW-Madison, the University of California at Los Angeles, and Oak Ridge National Laboratory.

Neutral beams have sometimes been used to heat plasmas and drive in another type of plasma device, called a tokamak. Other times, the effects are more problematic.

"Like throwing rocks into a pond generates ripples, these particles come in and generate ripples [in the plasma]. Those ripples can feed back on themselves and start to grow very big, and when the ripples get big enough they'll kick the particles out," says Koliner.

More work is needed to understand and, ultimately, control the bursts to harness the particles' energy rather than losing them from the plasma, he says. In addition, RFPs offer some advantages over tokamaks in studying basic plasma properties due to the way they contain and control plasmas. The beam on the Madison Symmetric Torus is the first on an RFP device and offers the first opportunity to characterize beam-generated instabilities in this type of plasma environment and compare them to those in tokamaks.

"Seeing what neutral beams can do in an RFP is a good way to figure out if you can use them to control [the plasma] in other ways in the future," Koliner says. "It's important first to lock down exactly what they do in all of the different possible plasma equilibria we can make in our machine. Once you figure out what they do, then you can come up with a plan."

Koliner and his colleagues are studying the particle bursts under several plasma conditions and operating modes to form the best possible picture of what the plasma looks like and how it is behaving in the different situations.

"The bursts themselves have illuminated a lot of what the beam is doing that has been somewhat mysterious, not perfectly understood up to this point," he says. "Knowing what these bursts do fills in a large piece of the picture."

Explore further: CERN: World-record current in a superconductor

More information: plasma.physics.wisc.edu/viewpage.php?id=mst

Related Stories

With lithium, more is definitely better

Nov 10, 2011

A team of scientists working at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has found that increasing the amount of lithium coating in the wall of an experimental fusion reactor ...

Taming thermonuclear plasma with a snowflake

Nov 08, 2010

Physicists working on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory are now one step closer to solving one of the grand challenges of magnetic fusion research -- ...

Upping the power triggers an ordered helical plasma

Nov 02, 2009

If you keep twisting a straight elastic string, at some moment it starts kinking in a wild way. Something similar occurs when one increases the electrical current flowing in a magnetized plasma doughnut: it ...

Wave power could contain fusion plasma

Jan 10, 2011

Researchers at the University of Warwick’s Centre for Fusion Space and Astrophysics and the UK Atomic Energy Authority’s Culham Centre for Fusion Energy may have found a way to channel the flux and fury of a nuclear ...

Recommended for you

CERN: World-record current in a superconductor

21 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

M4dH4TT3r
1 / 5 (1) Oct 28, 2012
Ive been working on something similar that started with the change within a liquid hydrogen vaccume tube from the muon neutrino to the electron neutrino

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...