Ceria nanoparticles could lessen the damage from ischemic strokes

September 14, 2012

(Phys.org)—The most common form of strokes are caused by a sudden reduction in blood flow to the brain (ischemia) that leads to an inadequate supply of oxygen and nutrients. These so-called ischemic strokes are one of the leading causes of death and disability in industrialized nations. If they are not immediately remedied by medical intervention, areas of the brain may die off. In the journal Angewandte Chemie, Korean researchers have now proposed a new approach for supplemental treatment: Ceria nanoparticles could trap the reactive oxygen compounds that result from ischemia and cause cells to die.

When blood flow to areas of the brain is restricted, reactive like superoxide radical anions (O2• –), (H2O2), and (HO• –) form and accumulate. These species cause oxidative damage and are responsible for tissue damage and cell death during a stroke. and neurovascular units are destroyed and the function of the brain in these areas stops. Despite various treatments that primarily combat the causes of reduced blood flow, such as thrombosis, there has been no way to protect nerves from oxidative damage after an . Seung-Hoon Lee, Taeghwan Hyeon, and their team at Seoul National University hope that nanoparticles made of ceria may represent a new approach for treatment.

Cells contain enzymes that can break down reactive oxygen species: superoxide dismutases, which convert superoxide anions to hydrogen peroxide; and catalase, which splits hydrogen peroxide. Ceria nanoparticles can do both. How does this work? The cerium in ceria crystals is present in the form of Ce4+. However, if the particle size is reduced to a few nanometers in diameter, some spots on the surface are missing . These places have Ce3+ instead, which can easily be reduced back to Ce4+ and can reversibly bind oxygen.

The researchers treated cell cultures with a substance that increases the concentrations of reactive oxygen species, which leads to increased cell death. Treatment with cerium oxide nanoparticles drastically improved the cell survival rate. In animal trials, the researchers induced ischemic strokes in rats. Intravenously administered ceria nanoparticles considerably reduced the stroke volume and nerve damage. An optimized, carefully balanced dose is necessary, however.

Interestingly, the concentrations of ceria nanoparticles in the healthy areas of the brain were very low, while those in the ischemic areas were drastically elevated. The researchers speculate that the ceria nanoparticles can barely pass through the intact blood-brain barrier. However, the barrier is damaged in the ischemic areas, allowing the diseased areas of the brain to be reached and oxidative damage to be stopped.

Explore further: Study: Added oxygen during stroke reduces brain tissue damage

More information: Taeghwan Hyeon, Ceria Nanoparticles that Protect against Ischemic Stroke, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201203780

Related Stories

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.