Bioengineers introduce "Bi-Fi": The biological Internet

Sep 27, 2012 by Andrew Myers

(Phys.org)—If you were a bacterium, the virus M13 might seem innocuous enough. It insinuates more than it invades, setting up shop like a freeloading houseguest, not a killer. Once inside it makes itself at home, eating your food, texting indiscriminately. Recently, however, bioengineers at Stanford University have given M13 a bit of a makeover.

The researchers, Monica Ortiz, a doctoral candidate in bioengineering, and Drew Endy, PhD, an assistant professor of bioengineering, have parasitized the parasite and harnessed M13's key attributes—its non-lethality and its ability to package and broadcast arbitrary —to create what might be termed the biological Internet, or "Bi-Fi." Their findings were published online Sept. 7 in the Journal of .

Using the virus, Ortiz and Endy have created a to send from cell to cell. The system greatly increases the complexity and amount of data that can be communicated between cells and could lead to greater control of biological functions within cell communities. The advance could prove a boon to bioengineers looking to create complex, multicellular communities that work in concert to accomplish important biological functions.

Medium and message

M13 is a packager of genetic messages. It reproduces within its host, taking strands of DNA—strands that engineers can control—wrapping them up one by one and sending them out encapsulated within proteins produced by M13 that can infect other cells. Once inside the new hosts, they release the packaged DNA message.

The M13-based system is essentially a . It acts like a wireless Internet connection that enables cells to send or receive messages, but it does not care what secrets the transmitted messages contain.

"Effectively, we've separated the message from the channel. We can now send any DNA message we want to specific cells within a complex microbial community," said Ortiz, the first author of the study.

It is well-known that cells naturally use various mechanisms, including chemicals, to communicate, but such messaging can be extremely limited in both complexity and bandwidth. Simple chemical signals are typically both message and messenger—two functions that cannot be separated.

"If your network connection is based on sugar then your messages are limited to 'more sugar,' 'less sugar,' or 'no sugar'" explained Endy.

Cells engineered with M13 can be programmed to communicate in much more complex, powerful ways than ever before. The possible messages are limited only by what can be encoded in DNA and thus can include any sort of genetic instruction: start growing, stop growing, come closer, swim away, produce insulin and so forth.

Rates and ranges

In harnessing DNA for cell-cell messaging the researchers have also greatly increased the amount of data they can transmit at any one time. In digital terms, they have increased the bit rate of their system. The largest DNA strand M13 is known to have packaged includes more than 40,000 base pairs. Base pairs, like 1s and 0s in digital encoding, are the basic building blocks of genetic data. Most genetic messages of interest in range from several hundred to many thousand base pairs.

Ortiz was even able to broadcast her genetic messages between cells separated by a gelatinous medium at a distance of greater than 7 centimeters.

"That's very long-range communication, cellularly speaking," she said.

Down the road, the biological Internet could lead to biosynthetic factories in which huge masses of microbes collaborate to make more complicated fuels, pharmaceuticals and other useful chemicals. With improvements, the engineers say, their cell-cell communication platform might someday allow more complex three-dimensional programming of cellular systems, including the regeneration of tissue or organs.

"The ability to communicate 'arbitrary' messages is a fundamental leap—from just a signal-and-response relationship to a true language of interaction," said Radhika Nagpal, professor of computer science at the Wyss Institute for Biologically Inspired Engineering at Harvard University, who was not involved in the research. "Orchestrating the cooperation of cells to form artificial tissues, or even artificial organisms is just one possibility. This opens a door to new biological systems and solving problems that have no direct analog in nature."

Ortiz added: "The biological Internet is in its very earliest stages. When the information Internet was first introduced in the 1970s, it would have been hard to imagine the myriad uses it sees today, so there's no telling all the places this new work might lead."

Explore further: DNA may have had humble beginnings as nutrient carrier

More information: www.jbioleng.org/content/6/1/16/abstract

Related Stories

Scientists suggest protocol for messaging to aliens

Feb 04, 2011

(PhysOrg.com) -- In 1974, humans broadcast the first message targeted at extraterrestrial life using the Arecibo radio telescope in Puerto Rico. The message, which was aimed at the globular star cluster M13 ...

DNA nanorobot triggers targeted therapeutic responses

Feb 16, 2012

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have developed a robotic device made from DNA that could potentially seek out specific cell targets within a complex ...

A new way to assemble cells into 3-D microtissues

Mar 05, 2009

Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory can now control how cells connect with one another in vitro and assemble themselves into three-dimensional, multicellular ...

Recommended for you

Research helps identify memory molecules

5 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

6 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

6 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

SoylentGrin
not rated yet Sep 27, 2012
So, information in the network spreads like an infection?
El_Nose
not rated yet Sep 27, 2012
could this be used in gene therapy.

you give this modified virus the new genetic information to be altered in every cell of the body. wait a few months for transmission and delivery. and boom you have altered the host genome?

can you get it to stop sending information?