Imprisoned molecules 'quantum rattle' in their cages

Aug 20, 2012

Scientists have discovered that a space inside a special type of carbon molecule can be used to imprison other smaller molecules such as hydrogen or water.

The nano-metre sized of the hollow spherical Buckminsterfullerene — or bucky ball — effectively creates a 'nanolaboratory', allowing detailed study of the quantum mechanical principles that determine the motion of the caged molecule, including the mysterious wave-like behaviour that is a fundamental property of all matter.

Experiments by the international collaboration of researchers, including physicists from The University of Nottingham, have revealed the wave-like behaviour and show how the imprisoned H2 and H2O molecules 'quantum rattle' in their cage.

Professor Tony Horsewill, of the School of Physics and Astronomy at The University of Nottingham, said: "For me a lot of the motivation for carrying out this investigation came from the sheer pleasure of studying such a unique and beautiful molecule and teasing out the fascinating insights it gave into the fundamentals of quantum molecular dynamics. Intellectually, it's been hugely enjoyable.

"However, as with any blue-skies research initiative there is always the promise of new, often unforeseen, applications. Indeed, in the case of water molecules inside bucky balls we have a guest molecule that possesses an electric dipole moment and the collaboration is already investigating its use in molecular electronics, including as an innovative component of a molecular transistor."

The research, which involved scientists from the US, Japan, France, Estonia and the universities of Nottingham and Southampton in the UK, has recently been published in the prestigious journal Proceedings of the National Academy of Sciences (PNAS).

The discovery of the C60 Buckminsterfullerene, and the related class of molecules the fullerenes, in the mid-1980s earned Professors Harry Kroto, Robert Curl and the late Richard Smalley the Nobel Prize in Chemistry in 1996.

It has a cage-like spherical structure made up for 20 hexagons and 12 pentagons and resembles a soccer ball, earning it the nickname 'bucky ball'.

In a recent breakthrough in synthetic chemistry, the Japanese scientists from Kyoto have invented a molecular surgery technique allowing them to successfully permanently seal small molecules such as H2 and H2O inside C60.

They used a set of surgical synthetic procedures to open the C60 'cage' producing an opening large enough to 'push' a H2 or H2O molecule inside at high temperature and pressure. The system was then cooled down to stabilise the entrapped molecule inside and the cage was surgically repaired to reproduce a C60.

Professor Horsewill added: "This technique succeeds in combining perhaps the universe's most beautiful molecule C60 with its simplest."

The Nottingham research group has employed a technique called inelastic neutron scattering (INS) where a beam of neutrons, fundamental particles that make up the atomic nucleus, is used to investigate the 'cage rattling' motion of the guest molecules within the C60.

Their investigations have given an insight into the wavelike nature of H20 and H2 molecules and their orbital and rotational motion as they move within the C60.

Professor Malcolm Levitt, of the School of Chemistry at The University of Southampton, who has used the technique nuclear magnetic resonance (NMR) to study the quantum properties of the caged molecules, said: "By confining small molecules such as water in fullerene cages we provide the controlled environment of a laboratory but on the scale of about one nanometre.

"Under these conditions, the confined reveal a wave-like nature and behave according to the laws of quantum mechanics. Apart from their intrinsic interest, we expect that the special properties of these materials will lead to a variety of applications, such as new ways to brighten the images of MRI scans, and new types of computer memory."

The work published in the PNAS paper has also separately identified two subtly different forms of H2O — ortho-water and para-water . These so called nuclear spin-isomers also owe their separate identities to quantum mechanical principles.

Explore further: Scientists use simple, low cost laser technique to improve properties and functions of nanomaterials

More information: The paper appearing in the latest edition of PNAS can be viewed online at www.pnas.org/cgi/doi/10.1073/pnas.1210790109

Related Stories

Decades-old mystery of buckyballs cracked

Jul 31, 2012

(Phys.org) -- After exploring for 25 years, scientists have solved the question of how the iconic family of caged-carbon molecules known as buckyballs form.

Graphene decoupling of organic/inorganic interfaces

Jun 19, 2012

(Phys.org) -- Cryogenic ultrahigh vacuum scanning tunneling microscopy (STM) was employed by researchers in the Center for Nanoscale Materials Electronic & Magnetic Materials & Devices Group at the Argonne ...

Chemistry in one dimension offers surprising result

Mar 27, 2012

Due to their unique properties single walled carbon nanotubes have been suggested as a promising material for electronics, optics and in other fields of materials science. When scientists from Umea University and Aalto University ...

Nanophysics: Serving up Buckyballs on a silver platter

Jul 27, 2009

Scientists at Penn State University, in collaboration with institutes in the US, Finland, Germany and the UK, have figured out the long-sought structure of a layer of C60 - carbon buckyballs - on a silver ...

Scientists build world's smallest 'water bottle'

Nov 19, 2010

Scientists have designed and built a container that holds just a single water molecule. The container consists of a fullerene cage and a phosphate moiety that acts as the “cap” to keep the water ...

Recommended for you

PPPL studies plasma's role in synthesizing nanoparticles

9 hours ago

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

First ab initio method for characterizing hot carriers

Jul 17, 2014

One of the major road blocks to the design and development of new, more efficient solar cells may have been cleared. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) have developed ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Sanescience
1 / 5 (1) Aug 20, 2012
nuclear spin-isomers found! Oh no, not more ammo for the structured water psycho babble con artists!

And I would have liked a little more info on how the wave-like properties were measured. A hunting I shall go...
Argiod
1 / 5 (2) Aug 20, 2012
Indeed, Sanescience, I'd like to know if they're measuring the 'wiggle', or creating it by rattling the cage... can it be observed and still have confidence in the results? Does not the observer affect the observed?
MrVibrating
1 / 5 (1) Aug 20, 2012
..another application that springs to mind would be artificial quantum olfaction - even if that isn't how our sense of smell works (tho odds-on it is), the principle seems sound, and now here's the means...
DarkHorse66
1 / 5 (1) Aug 21, 2012
There would have to be some sort of interaction between the two that might result in a new composite 'material', with properties of its own. The final compound would no longer be a 'simple' buckyball and molecule, but something different. What would such a combined structure be called? How (un)likely is it that this would/could exist in nature? Cheers, DH66