A good guessing method makes supercomputing more efficient

Aug 24, 2012
A good guessing method makes supercomputing more efficient

In his doctoral dissertation, Kurt Baarman, a researcher from Aalto University, developed methods for making electron density calculations more efficient. These methods can also be applied to pharmaceutical development.

A computer is an increasingly important tool for both physicists and chemists. can be used to model materials that cannot yet be produced experimentally. Even the electronic structure surrounding an atom can be determined with . These nonlinear , however, come with a particular difficulty: the solution has to be guessed in advance.

"Only then we can see how good our guess was. In my dissertation, I have looked at ways to minimise the number of guesses needed to achieve the best possible result", Kurt Baarman explains.

With the help of supercomputers and , the interactions between hundreds of molecules can be modelled. This has aroused interest in the pharmaceutical companies, and developers of new materials, because the electronic structure of a material determines its essential electric and chemical properties. Computational speed is of essence because a large part of the supercomputer capacity in the world is used on calculating the electronic structure of materials.

In his dissertation, Baarman developed new methods for making calculations more efficient. The first research paper in the dissertation demonstrates how quasi-Newton methods, which have been long known to mathematicians, can be applied to calculations of materials' electronic structures using the density functional theory. 

Earning the 1998 Nobel Prize in Chemistry to its inventor, has become the most popular model for calculating the electronic structure of materials. "Based on the results, when applied correctly, quasi-Newton is a very good method. For more complex problems it comes up with a solution more effectively than other methods. "

Medicines and new materials

The other important innovation to come from the dissertation is a novel update operator, which speeds up iterative calculations.

"It shortens the computational times required. Now we are able to perform calculations on more challenging systems", Baarman states. 

Baarman's methods work particularly well with computationally challenging materials, such as metals. 

 At the moment, the researcher from the Aalto University Department of Mathematics and Systems Analysis is visiting the biomolecular research group of the Fritz Haber Institute in Berlin where he is implementing the computational methods for the code developed and used by the physicists of the group. 

"It makes the physicists' job easier. They are interested in what a molecule looks like, its formation energy or how a drug reacts with another molecule, not in constructing a computational method."

Baarman hopes that in the future, the methods now being tested by chemists and physicists will be in wider use.

"The next step is for product developers to start using the tools, developing new medicines, materials or for instance catalytic converters for cars."

Explore further: Researchers find tin selenide shows promise for efficiently converting waste heat into electrical energy

add to favorites email to friend print save as pdf

Related Stories

Computational actinide chemistry: Are we there yet?

Aug 21, 2007

Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical ...

Computational chemistry shows the way to safer biofuels

Jul 30, 2011

Replacing gasoline and diesel with plant-based bio fuels is crucial to curb climate change. But there are several ways to transform crops to fuel, and some of the methods result in bio fuels that are harmful to health as ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...