First full colour images at 100,000 dpi resolution with help of nanotechnology

Aug 12, 2012
A coloured nanoscale rendition of a standard test image used in image processing experiments - (a) Before the addition of metal in the nanostructures, the image has only grayscale tones as observed under an optical microscope. (b) Colours are observed using the same optical microscope after addition of the metal layers to the nanostrucutres and in specific patterns. (c) Zooming into the image with the same setup, the specular reflection at the corner of the eye is observed showing the refined colour detail that the new method is able to achieve. The region indicated (bottom right) is made up of nanostructures as observed in the electron micrograph. Credit: Agency for Science, Technology and Research (A*STAR)

Inspired by colourful stained-glass windows, researchers from Singapore have demonstrated an innovative method for producing sharp, full-spectrum colour images at 100,000 dpi which can be applicable in reflective colour displays, anti-counterfeiting, and high-density optical data recording.

Researchers from A*STAR’s Institute of Materials Research and Engineering (IMRE) have developed an innovative method for creating sharp, full-spectrum colour at 100,000 dots per inch (dpi), using metal-laced nanometer-sized structures, without the need for inks or dyes. In comparison, current industrial printers such as inkjet and laserjet printers can only achieve up to 10,000 dpi while research grade methods are able to dispense dyes for only single colour images. This novel breakthrough allows colouring to be treated not as an inking matter but as a lithographic matter, which can potentially revolutionise the way images are printed and be further developed for use in high-resolution reflective colour displays as well as high density storage.

The inspiration for the research was derived from stained glass, which is traditionally made by mixing tiny fragments of metal into the glass. It was found that nanoparticles from these metal fragments scattered light passing through the glass to give stained glass its colours. Using a similar concept with the help of modern nanotechnology tools, the researchers precisely patterned metal nanostructures, and designed the surface to reflect the light to achieve the colour images.

"The resolution of printed colour images very much depends on the size and spacing between individual ‘nanodots’ of colour", explained Dr Karthik Kumar, one of the key researchers involved. "The closer the dots are together and because of their small size, the higher the resolution of the image. With the ability to accurately position these extremely small colour dots, we were able to demonstrate the highest theoretical print colour resolution of 100,000 dpi."

“Instead of using different dyes for different colours, we encoded colour information into the size and position of tiny metal disks. These disks then interacted with light through the phenomenon of plasmon resonances,” said Dr Joel Yang, the project leader of the research. “The team built a database of colour that corresponded to a specific nanostructure pattern, size and spacing. These nanostructures were then positioned accordingly. Similar to a child’s ‘colouring-by-numbers’ image, the sizes and positions of these nanostructures defined the ‘numbers’. But instead of sequentially colouring each area with a different ink, an ultrathin and uniform metal film was deposited across the entire image causing the ‘encoded’ colours to appear all at once, almost like magic!” added Dr Joel Yang.

The researchers from IMRE had also collaborated with A*STAR’s Institute of High Performance Computing (IHPC) to design the pattern using computer simulation and modelling. Dr Ravi Hegde of IHPC said, “The computer simulations were vital in understanding how the structures gave rise to such rich colours. This knowledge is currently being used to predict the behaviour of more complicated nanostructure arrays.”

The researchers are currently working with Exploit Technologies Pte Ltd (ETPL), A*STAR’s technology transfer arm, to engage potential collaborators and to explore licensing the technology. The research was published online on 12 August 2012 in Nature Nanotechnology, one of the top scientific journals for materials science and .

Explore further: Researchers make nanostructured carbon using the waste product sawdust

More information: Karthik Kumar, Huigao Duan, Ravi S. Hegde, Samuel C.W. Koh, Jennifer N. Wei and Joel K.W. Yang; “Printing Colour at the Optical Diffraction Limit”; Nature Nanotechnology, DOI: 10.1038/nnano.2012.128

Related Stories

Research finds out what London 2012 says about Britain

Jul 27, 2012

When the London 2012 Opening Ceremony is broadcast around the globe, an estimated one billion people will be watching, and inevitably drawing their own conclusions on our nation and what it means to be British.

Reading in two colours at the same time

Mar 09, 2011

The Nobel prize-winning physicist Richard Feynman once wrote in his autobiographical book (What do you care what other people think?): "When I see equations, I see letters in colors - I don't know why [...] And I wonder what t ...

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

Oct 22, 2014

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (2) Aug 12, 2012
Whenever I read an article by A*STAR institute I have to smile inwardly and congratulate the people in choosing the name of the institute (The A* algorithm is a search algorithm - e.g. employed in computer games - for getting the shortest path from point A to point B)
They do outstanding work.
Jotaf
not rated yet Aug 12, 2012
The other chuckle-worthy aspect is the classic Lena image, which they dryly describe as "a standard test image used in image processing experiments"! Oh Lena...
teledyn
3 / 5 (2) Aug 12, 2012
Outstanding! The merger of extreme high-tech imagery once again ruled over by the gracious image of Lenna, the goddess of modern image processing. http://www.lenna....ull.html for the original and the legend that brought that image to here.
aheartmedicine
Aug 12, 2012
This comment has been removed by a moderator.