New catalyst could improve production of glass alternatives

Aug 21, 2012
UO chemists' catalyst could improve production of glass alternatives

(Phys.org) -- University of Oregon chemists have identified a catalyst that could dramatically reduce the amount of waste made in the production of methyl methacrylate, a monomer used in the large-scale manufacturing of lightweight, shatter-resistant alternatives to glass such as Plexiglas.

David Tyler, Charles J. and M. Monteith Jacobs Professor of Chemistry, will present his findings Tuesday at the national meeting of the , Aug. 19-23 in Philadelphia, Penn.

of methyl methacrylate was 4 million metric tons in 2010. Each kilogram produced also yields 2.5 kilograms of ammonium hydrogen sulfate, a corrosive that is not usable. Disposal of ammonium hydrogen sulfate is extremely energy intensive, consuming 2 percent of the energy used in Texas annually.

Tyler’s team has identified a catalyst that doesn’t produce ammonium hydrogen sulfate. The university is securing a provisional patent for the catalyst.

“There were some really fundamental chemical reasons why previous catalysts didn’t work with this process,” Tyler said. “We’ve found a catalyst that overcomes all of those objections.”

With the identification of a working catalyst, Tyler will focus his research on how to accelerate the conversion to methyl methacrylate. The industrial standard for a practical catalyst is conversion of acetone cyanohydrin into methyl methacrylate in the span of a minute or two, Tyler said.

Explore further: Incorporation of DOPA into engineered mussel glue proteins

add to favorites email to friend print save as pdf

Related Stories

Metal particle generates new hope for H2 energy

Jun 28, 2011

(PhysOrg.com) -- Tiny metallic particles produced by University of Adelaide chemistry researchers are bringing new hope for the production of cheap, efficient and clean hydrogen energy.

Novel chemical reaction

Apr 16, 2012

(Phys.org) -- A chemical reaction reported by University of Delaware assistant professor Donald Watson and his laboratory group has set the chemistry world abuzz for its creativity and potential utility. 

Recommended for you

Separation of para and ortho water

20 hours ago

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Squirrel
not rated yet Aug 21, 2012
According to Wikipedia it "can be further neutralized with ammonia to form ammonium sulfate, a valuable fertilizer."

I wonder if its "extremely energy intensive" disposal that consumes 2 percent of the energy used in Texas annually is used to create that extra ammonia.