Martian polygons and deep-sea polygons on Earth: More evidence for ancient Martian oceans?

Jul 27, 2012

Debate over the origin of large-scale polygons (hundreds of meters to kilometers in diameter) on Mars remains active even after several decades of detailed observations. Similarity in geometric patterns on Mars and Earth has long captured the imagination. In this new article from GSA Today, geologists at The University of Texas at Austin examine these large-scale polygons and compare them to similar features on Earth's seafloor, which they believe may have formed via similar processes.

Understanding these processes may in turn fuel support for the idea of on Mars.

Through examination of THEMIS, MOLA, Viking, and Mariner data and images, planetary scientists have found that areas on the northern plains of Mars are divided into large polygon-shaped portions and that sets of these polygons span extensive areas of the . Smaller polygon-shaped bodies are found elsewhere on Mars, but these are best explained by processes similar to those in terrestrial permafrost environments and not likely to form larger polygons.

In the August 2012 issue of GSA Today, Lorena Moscardelli and her colleagues from The University of Texas at Austin present a detailed comparison of the geometric features of these large Martian polygons and similar features found in deep-sea sediments here on Earth. Moscardelli and colleagues note striking similarities.

On Earth, polygon-shaped areas, with the edges formed by faults, are common in fine-grained deep-. Some of the best examples of these polygon-fault areas are found in the and the Norwegian Sea. These are imaged using detailed, 3-D seismic surveys conducted to search for and gas deposits. Images reproduced in this paper show that these deep-water polygons are also 1,000 meters or greater in diameter.

While the details of deep-sea polygon formation on Earth are complex, Moscardelli and her colleagues conclude that the majority of these polygons form in a common environment: sediments made up of fine-grained clays in ocean basins that are deeper than 500 meters, and when these sediments are only shallowly buried by younger sediments. A key observation -- also made recently by Michelle Cooke at the University of Massachusetts -- is that the physical mechanism of polygon formation requires a thick, wet, and mechanically weak layer of sediment.

Moscardelli and colleagues also conclude that the slope angle of the sea floor plays an important role in both the formation and preservation of these polygons. Where the seafloor slope is very gentle (slopes less than half a degree), the polygons have very regular shapes and sizes. In many locations where polygons have formed on top of buried topographic features on the seafloor, the shapes of the polygons were altered, and in some cases were broken up and disrupted where the slopes were steepest. Both observations are consistent with deformation of the soft marine sediments as they creep or flow downslope in these areas.

In the northern plains of Mars, where the surface is basically flat, the polygons have very regular shapes and sizes -- remarkably similar to the deep-sea polygons found on Earth. In places where the topography on Mars is more varied, and where there may be evidence for other sediment-transport features on the surface, areas of deformed and disrupted polygons can be found -- again similar to the disrupted polygons here on Earth.

On the basis of these striking similarities, the University of Texas at Austin team concludes that these features most likely share a common origin and were formed by similar mechanisms in a similar environment. The team argues that the Martian polygons were formed within a thick, wet, and weak layer of fine-grained sediments that were deposited in a deep-water setting, similar to the Earth polygons. Thus, these interesting geometric features may provide additional evidence for the existence of an ocean in the northern portion of Mars approximately three billion years ago.

Explore further: Space sex geckos at risk as Russia loses control of satellite

More information: Deep-water polygonal fault systems as terrestrial analogs for large-scale Martian polygonal terrains Lorena Moscardelli, Tim Dooley, Dallas Dunlap, Martin Jackson, and Lesli Wood, Pages 1-9; doi: 10.1130/GSATG147A.1

Related Stories

Phoenix Mars Lander Explores Site by Trenching

Aug 21, 2008

NASA's Phoenix Mars Lander scientists and engineers are continuing to dig into the area around the lander with the spacecraft's robotic arm, looking for new materials to analyze and examining the soil and ice subsurface structure.

Analysis Begins on Deepest Martian Soil Sample

Sep 02, 2008

(PhysOrg.com) -- Scientists have begun to analyze a sample of soil delivered to NASA's Phoenix Mars Lander's wet chemistry experiment from the deepest trench dug so far in the Martian arctic plains. Phoenix ...

Important role of groundwater springs in shaping Mars

Dec 11, 2008

Data and images from Mars Express suggest that several Light Toned Deposits, some of the least understood features on Mars, were formed when large amounts of groundwater burst on to the surface. Scientists ...

Phoenix Spacecraft Commanded to Unstow Arm

May 28, 2008

Scientists leading NASA's Phoenix Mars mission from the University of Arizona in Tucson sent commands to unstow its robotic arm and take more images of its landing site early today.

Recommended for you

Video: A dizzying view of the Earth from space

10 hours ago

We've got vertigo watching this video, but in a good way! This is a sped-up view of Earth from the International Space Station from the Cupola, a wraparound window that is usually used for cargo ship berthings ...

NEOWISE spots a comet that looked like an asteroid

10 hours ago

Comet C/2013 UQ4 (Catalina) has been observed by NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft just one day after passing through its closest approach to the sun. The comet ...

What the UK Space Agency can teach Australia

11 hours ago

Australia has had an active civil space program since 1947 but has much to learn if it is to capture a bigger share of growing billion dollar global space industry. ...

Discover the "X-factor" of NASA's Webb telescope

11 hours ago

NASA's James Webb Space Telescope and Chandra X-ray observatory have something in common: a huge test chamber used to simulate the hazards of space and the distant glow of starlight. Viewers can learn about ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

barakn
3.7 / 5 (3) Jul 28, 2012
Hats off to the Geological Society of America and their publication GSA Today, which are providing the original paper free of charge (link at bottom of story).
SatanLover
3 / 5 (2) Jul 28, 2012
perhaps we were martians and had to leave to earth because we fucked up the planet.
rebelclause
1 / 5 (2) Jul 29, 2012
To me, it seems the mechanism is only implied. To my mind it would involve sediment transport, compression, draining and rolling where edge compressibility might create the condition under a constand pressure in large lattice-like formation/behavior. Is any of this transferable to our understanding of the great atmospheric polygon seen penetrating Saturn's clouds at the north pole?