New clues to the early Solar System from ancient meteorites

Jul 22, 2012
Earth

In order to understand Earth's earliest history--its formation from Solar System material into the present-day layering of metal core and mantle, and crust--scientists look to meteorites. New research from a team including Carnegie's Doug Rumble and Liping Qin focuses on one particularly old type of meteorite called diogenites. These samples were examined using an array of techniques, including precise analysis of certain elements for important clues to some of the Solar System's earliest chemical processing. Their work is published online July 22 by Nature Geoscience.

At some point after or large bodies accreted from surrounding Solar System material, they differentiate into a , asilicate mantle, and a crust. This involved a great deal of heating. The sources of this heat are the decay of short-lived , the that occurs when dense metals are physically separated from lighter , and the impact of large objects. Studies indicate that the Earth's and Moon's mantles may have formed more than 4.4 billion years ago, and Mars's more than 4.5 billion years ago.

Theoretically, when a planet or large body differentiates enough to form a core, certain elements including , iridium, , platinum, palladium, and —known as highly siderophile elements—are segregated into the core. But studies show that mantles of the Earth, Moon and Mars contain more of these elements than they should. Scientists have several theories about why this is the case and the research team—which included lead author James Day of Scripps Institution of Oceanography and Richard Walker of the University of Maryland—set out to explore these theories by looking at diogenite meteorites.

Diogenites are a kind of meteorite that may have come from the asteroid Vesta, or a similar body. They represent some of the Solar System's oldest existing examples of heat-related chemical processing. What's more, Vesta or their other parent bodies were large enough to have undergone a similar degree of differentiation to Earth, thus forming a kind of scale model of a terrestrial planet.

The team examined seven diogenites from Antarctica and two that landed in the African desert. They were able to confirm that these samples came from no fewer than two parent bodies and that the crystallization of their minerals occurred about 4.6 billion years ago, only 2 million years after condensation of the oldest solids in the Solar System.

Examination of the samples determined that the highly siderophile elements present in the diogenite meteorites were present during formation of the rocks, which could only occur if late addition or 'accretion' of these elements after core formation had taken place. This timing of late accretion is earlier than previously thought, and much earlier than similar processes are thought to have occurred on Earth, Mars, or the Moon.

Remarkably, these results demonstrate that accretion, core formation, primary differentiation, and late accretion were all accomplished in just over 2 to 3 million years on some parent bodies. In the case of Earth, there followed crust formation, the development of an atmosphere, and plate tectonics, among other geologic processes, so the evidence for this early period is no longer preserved.

"This new understanding of diogenites gives us a better picture of the earliest days of our Solar System and will help us understand the Earth's birth and infancy," Rumble said. "Clearly we can now see that early events in planetary formation set the stage very quickly for protracted subsequent histories."

Explore further: Bright points in Sun's atmosphere mark patterns deep in its interior

Related Stories

Half-baked asteroids have Earth-like crust

Jan 07, 2009

Asteroids are hunks of rock that orbit in the outer reaches of space, and scientists have generally assumed that their small size limited the types of rock that could form in their crusts. But two newly discovered ...

Earth's final growth spurt

Dec 17, 2010

What led to water on the interior of the Moon or the formation of the Borealis basin that covers 40 percent of the surface of Mars? And what caused at least some of Earth’s tilt — without which there ...

Recommended for you

Sun emits a mid-level solar flare

22 minutes ago

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

Impact glass stores biodata for millions of years

2 hours ago

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

The importance of plumes

3 hours ago

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

Ceres and Vesta Converge in Virgo

6 hours ago

Don't let them pass you by. Right now and continuing through July, the biggest and brightest asteroids will be running on nearly parallel tracks in the constellation Virgo and so close together they'll easily ...

A full-spectrum Mars simulation in a box

6 hours ago

There are many reasons why Mars excels at destroying expensive equipment. For one thing, its entire surface is made of partially-magnetized dust. For another, Mars possesses just enough atmosphere so that ...

User comments : 0

More news stories

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...