Global warming threat seen in fertile soil of northeastern US forests

Jun 11, 2012

Vast stores of carbon in U.S. forest soils could be released by rising global temperatures, according to a study by UC Irvine and other researchers in today's online Proceedings of the National Academy of Sciences in Washington, D.C.

The scientists found that heating soil in Wisconsin and North Carolina woodlands by 10 and 20 degrees increased the release of carbon dioxide by up to eight times. They showed for the first time that most carbon in topsoil is vulnerable to this warming effect.

"We found that decades-old carbon in surface soils is released to the atmosphere faster when temperatures become warmer," said lead author Francesca Hopkins, a doctoral researcher in UCI's department. "This suggests that soils could accelerate global warming through a vicious cycle in which man-made warming releases carbon from soils to the atmosphere, which, in turn, would warm the planet more."

Soil, which takes its rich, brown color from large amounts of carbon in decaying leaves and roots, stores more than twice as much of the element as does the atmosphere, according to United Nations reports. Previously, it wasn't known whether carbon housed in soil for a decade or longer would be released faster under higher temperatures, because it's difficult to measure. The team, using carbon isotopes, discovered that older is indeed susceptible to warming.

Forest lands, which contain about 104 billion tons of carbon reserves, have been one of the biggest unknowns in climate change predictions. Northeastern woodlands that were once farm fields are currently one of the Earth's beneficial carbon sinks, holding nearly 26 billion tons. But worry that trees and soils could become sources of rather than repositories.

"Our results suggest that large stores of carbon that built up over the last century as forests recovered will erode with rising temperatures," said Susan Trumbore of the Max Planck Institute for Biogeochemistry and UCI, who led the research team, which also included Margaret Torn, head of the Climate & Carbon Sciences Program at Lawrence Berkeley National Laboratory.

Microbes in soil near tree roots, in particular, eat carbon, and it's then diffused into the air as carbon dioxide, already the largest greenhouse gas in the atmosphere.

"These are carbon dioxide sources that, in effect, we can't control," Hopkins said. "We could control how much gasoline we burn, how much coal we burn, but we don't have control over how much carbon the soil will release once this gets going."

Explore further: Priorities for research on pharmaceutical and personal care products in the environment

More information: www.pnas.org/content/early/201… /1120603109.abstract

Related Stories

Researcher seeks 'missing piece' in climate change models

Feb 13, 2007

To most people, soil is just dirt. But to microbiologists, it is a veritable zoo of bacteria, fungi and nematodes. It's also a vast carbon dioxide factory. As these microorganisms consume carbon-based materials found in soil, ...

Recommended for you

Implications for the fate of green fertilizers

8 hours ago

The use of green fertilizers is a practice that has been around since humans first began growing food, but researchers are warning that modern techniques for the creation of these fertilizers could have implications ...

Ditching coal a massive step to climate goal: experts

9 hours ago

Phasing out coal as an electricity source by 2050 would bring the world 0.5 degrees Celsius closer to the UN's targeted cap for climate warming, an analysis said on the eve of Tuesday's UN climate summit.

Monitoring heavy metals using mussels

12 hours ago

A research team in Malaysia has concluded that caged mussels are useful for monitoring heavy metal contamination in coastal waters in the Strait of Johore. Initial results indicate more pollution in the eastern ...

User comments : 0