Research suggests that ancient granites made advanced life possible

Jun 21, 2012 By Chris Gorski
John Parnell examining granite in Laxford Brae, Sutherlandshire, U.K. Image credit: University of Aberdeen

A little less than 2 billion years ago, metals including copper, molybdenum and zinc became available to primitive cells, at the same time that the cells began to become much more complex. Scientists indicate that they have identified the event that introduced these metals, which made it possible for those primitive cells to develop, evolve, and spread.

The secret, according to researchers, was granite.

The new research suggests that the large amount of heat within the Earth at this time caused metal-laden magmas to rise from great depths, which cooled into granites near the surface. The scientists conclude that this event caused the substantial change in the Earth's surface and ocean chemistry that began about 2 billion years ago.

This hypothesis challenges the prevailing consensus that changes in were responsible for enabling life to undertake this transition.

"There's no doubt that probably a lot of metal was locked up in the oceans," said John Parnell, a geologist from the University of Aberdeen, in the U.K. "[We're] suggesting that it's the where the metal was really being made newly available."

Parnell brought together several pieces of evidence to show that granites formed, came to the surface of continents, then weathered. freed up metals, he said, which traveled with runoff to fill lakes and shallow seas, places where could incorporate the metals and become more complex.

"We propose that metals were delivered due to a critical combination of continental growth, near-surface concentration, and erosion into the surface environment during the Mesoproterozoic [a time period from roughly 1.6-1.0 billion years ago]," Parnell and his colleagues wrote in their paper, published this month in Geology.

Life originated more than 3.5 billion years ago, as basic prokaryotic cells, which did not have a nucleus. Advanced cells -- called eukaryotes -- added a nucleus. They evolved around 2 billion years ago. Then, sometime between 2 billion and 1 billion years ago, these cells proliferated, sexual reproduction evolved, and the first multicellular organisms developed.

Parnell said that he brought together two areas of research to form this conclusion.. The first was from scientists who identified that critical advances in life lined up with increased access to metals about 1.5 to 2 billion years ago. A second group had shown that granites bearing many of these same metals formed at about the same time.

"Nobody had thought about it in this way before," said Parnell.

"It's really interesting and intriguing," said Ariel Anbar, a geologist at Arizona State University in Tempe. "A lot of us in the community have noted loosely that there's this correlation and we've wondered if there's something to it."

Anbar also called the article "thought-provoking." He suggested that the increased availability of oxygen in the environment may have been more responsible for life's increasing complexity.

However, Anbar also added that complex processes can have several contributing factors.

"I think we should all be cautious about saying, 'Oh, this one factor was the key,'" said Anbar. "There are probably multiple factors."

Regardless of the root cause that made new elements available to ancient life, metals such copper, molybdenum, and zinc remain important.

"Many people will know that we have plenty of iron in our body, and you can see that in the red color in our blood," said Parnell. "We have just as much zinc in our bodies as we have iron."

Explore further: Clean air: Fewer sources for self-cleaning

More information: Research paper: geology.gsapubs.org/content/early/2012/06/07/G33116.1.abstract

Journal reference: Geology search and more info website

Source: Inside Science News Service

4.8 /5 (10 votes)

Related Stories

A birthplace for primitive life on Earth?

Oct 24, 2011

The mud volcanoes at Isua, in south-west Greenland, have been identified as a possible birthplace for life on Earth by an international team headed by researchers from the Laboratoire de Géologie de Lyon: ...

Recommended for you

Clean air: Fewer sources for self-cleaning

9 hours ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

9 hours ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

16 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

17 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
1 / 5 (1) Jun 21, 2012
I think Anbar's take is reasonable. Even with more availability, we can't say if elements are critical just from that.

Instead, Parnell's research is partly contradicted by modern whole genome phylogenies. Zinc has always been much utilized by cells, starting as 1/4th of the genes using transition metals and later decreased to 1/5th as for example genes for copper and molybdenum ramps up in number. ["Rapid evolutionary innovation during an Archaean genetic expansion", David et al, Nature 2010]

The overall idea of studying the coupling between geosphere and biosphere is a good one, originating with Hazen I believe.

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...