At smallest scale, liquid crystal behavior portends new materials

May 02, 2012

Liquid crystals, the state of matter that makes possible the flat screen technology now commonly used in televisions and computers, may have some new technological tricks in store.

Writing today (May 3, 2012) in the journal Nature, an international team of researchers led by University of Wisconsin-Madison Professor of Chemical and Biological Engineering Juan J. de Pablo reports the results of a computational study that shows liquid crystals, manipulated at the smallest scale, can unexpectedly induce the molecules they interact with to self-organize in ways that could lead to entirely new classes of materials with new properties.

"From an applied perspective, once we get to very small scales, it becomes incredibly difficult to pattern the structure of materials. But here we show it is possible to use liquid crystals to spontaneously create nanoscale morphologies we didn't know existed," says de Pablo of computer simulations that portray liquid crystals self-organizing at the molecular scale in ways that could lead to remarkable new materials with scores of technological applications.

As their name implies, liquid crystals exhibit the order of a solid crystal but flow like a liquid. Used in combination with polarizers, optical filters and electric fields, liquid crystals underlie the pixels that make sharp pictures on thin computer or television displays. alone are a multibillion dollar industry. The technology has also been used to make ultrasensitive thermometers and has even been deployed in lasers, among other applications.

The new study modeled the behavior of thousands of rod-shaped packed into nano-sized liquid droplets. It showed that the confined molecules self organize as the droplets are cooled. "At elevated temperatures, the droplets are disordered and the liquid is isotropic," de Pablo explains. "As you cool them down, they become ordered and form a liquid crystal phase. The liquid crystallinity within the droplets, surprisingly, induces water and other molecules at the interface of the droplets, known as surfactants, to organize into ordered nanodomains. This is a behavior that was not known."

In the absence of a liquid crystal, the molecules at the interface of the droplet adopt a homogeneous distribution. In the presence of a liquid crystal, however, they form an ordered nanostructure. "You have two things going on at the same time: confinement of the liquid crystals and an interplay of their structure with the interface of the droplet," notes de Pablo. "As you lower the temperature the liquid crystal starts to become organized and imprints that order into the surfactant itself, causing it to self assemble."

It was well known that interfaces influence the order or morphology of liquid crystals. The new study shows the opposite to be true as well.

"Now you can think of forming these ordered nanophases, controlling them through droplet size or surfactant concentration, and then decorating them to build up structures and create new classes of materials," says de Pablo.

As an example, de Pablo suggested that surfactants coupled to DNA molecules could be added to the surface of a liquid crystal droplets, which could then assemble through the hybridization of DNA. Such nanoscale engineering, he notes, could also form the basis for based detection of toxins, biological molecules, or viruses. A virus or protein binding to the droplet would change the way the surfactants and the liquid crystals within the droplet are organized, triggering an optical signal. Such a technology would have important uses in biosecurity, health care and biology research settings.

Explore further: Beam on target: CEBAF accelerator achieves 12 GeV commissioning milestone

Related Stories

Crystal to glass cooling model developed

Feb 22, 2006

University of Tokyo scientists have discovered why cooling sometimes causes liquid molecules to form disordered glasses, rather than ordered crystals.

Recommended for you

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

gopher65
not rated yet May 02, 2012
This is amazing work. Due to the sheer volume of liquid crystal manufacturing available, any new applications that come from this could potentially make it to market very quickly, and with economics of scale already on their side.

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...