Novel holographic antenna designs and uses

May 30, 2012
Novel holographic antenna designs and uses
Credit: Thinkstock

Holographic antennas first studied around 40 years ago are again a hot topic given the potential of holographic images for a variety of applications. EU researchers developed novel prototype devices based on the associated technology with excellent commercialization potential.

Holograms are virtual images resulting from the interference of two electromagnetic (EM) waves. Holographic antennas (HAs) are antennas where the reflecting surface (aperture) is formed by a conductive metallic pattern on a grounded multi-layer dielectric substrate. In order to exploit this interference, can propagate along the substrate and the is then produced by interference at the air-substrate interface.

EU-funded researchers have initiated the ALOHA Torino-Sydney project to investigate prototype HAs in the microwave frequency range of the EM. Holographic capabilities would be imparted by microstrip technology supporting the propagation of surface waves along the interface of two different media.

Investigators focused on a width-modulated microstrip line inside single structures called unit cells. A cylindrical geometry was then achieved consisting of periodic repeats of unit cells along different directions and enabling coupling of surface and waves leading to interesting EM phenomena.

Among the numerous prototypes and designs that have been developed is a functioning in the microwave K-band of the EM spectrum (18–27 GigaHertz (GHz)) used in satellite communications.

Another demonstrator, consisting of 24 active unit cells each independently tuneable and with excellent filter parameters, enabled a huge size reduction and potential for use in advanced applications such as so-called cognitive radios that intelligently and efficiently select wireless communication channels.

Researchers have also to date manufactured two different periodic configurations of a multi-layer reflector screen covering the ultra-wide band (UWB) of frequencies (3.1–10.6 GHz) used in radar tracking applications as well as in wireless communications. The enhanced properties suggest tremendous industrial potential.

The numerous prototypes manufactured by the ALOHA Torino-Sydney project team demonstrate new and improved capabilities of HAs with potential applications in a variety of established and emerging fields. Continuing research should enable optimisation of the demonstrators as well as development of additional devices.

Explore further: Identifying long-distance threats: New 3D technology could improve CCTV images

add to favorites email to friend print save as pdf

Related Stories

NIST Measures Challenges for Wireless in Factories

Aug 31, 2007

Factories have much to gain from wireless technology, such as robot control, RFID tag monitoring, and local-area network (LAN) communications. Wireless systems can cost less and offer more flexibility than cabled systems. ...

DOCOMO develops compact multi-band power amplifier

May 20, 2011

NTT DOCOMO today announced that it has developed a prototype power amplifier for six frequency bands between 1.5 GHz and 2.5 GHz in a form factor smaller than multiple single-band power amplifiers conventionally ...

Microwavable chips for wireless communication

Aug 17, 2005

A recent EU project designed and developed a new demonstrator microchip that will dramatically cut the cost of producing new wireless products and could mean that a whole range of existing products will be enabled for wireless ...

Recommended for you

3D printed nose wins design award

23 hours ago

A Victoria University of Wellington design student is the New Zealand finalist for the James Dyson Award 2014 for his Master's project—a 3D printed prosthetic nose.

Engineering the Kelpies

Aug 27, 2014

Recently, Falkirk in Scotland saw the opening of the Kelpies, two thirty metre high horse head sculptures either side of a lock in a new canal extension.

Technology on the catwalk

Aug 27, 2014

Summer days bring thoughts of beach picnics, outdoor barbecues and pool parties. Yet it only takes the buzz of one tiny mosquito to dampen the fun.

Dismantling ships and the trajectory of steel

Aug 27, 2014

Tell me how you dismantle a ship, and I'll tell how a region can prosper from its steel! This could be the motto of this master's cycle at ENAC during which the projects of two civil engineering students ...

User comments : 0