Finding good music in noisy online markets

May 31, 2012 by Larry Hardesty
Online music purchasing graphic. Graphic: Christine Daniloff

In 2004, a trio of researchers at Columbia University began an online experiment in social-media marketing, creating nine versions of a music-download site that presented the same group of unknown songs in different ways. The goal of the experiment was to gauge the effect of early peer recommendations on the songs’ success; the researchers found that different songs became hits on the different sites and that the variation was unpredictable.

“It’s natural to believe that successful songs, movies, books and artists are somehow ‘better,’” one of the wrote in The New York Times in 2007. “What our results suggest, however, is that because what people like depends on what they think other people like, what the market ‘wants’ at any point in time can depend very sensitively on its own history.”

But for fans who would like to think that talent is ultimately rewarded, the situation may not be as dire as the Columbia study makes it seem. In a paper published in the online journal PLoS ONE, researchers from the MIT Media Laboratory’s Human Dynamics Lab revisit data from the original experiment and suggest that it contains a clear quantitative indicator of quality that’s consistent across all the sites; moreover, they find that the unpredictability of the experimental results may have as much to do with the way the test sites were organized as with social influence.

Numbers game

In their analysis, Alex “Sandy” Pentland, the Toshiba Professor of Media Arts and Science, his graduate students Coco Krumme — first author on the new paper — and Galen Pickard, and Manuel Cebrian, a former postdoc at the Media Lab, developed a mathematical model that, while simple, predicts the experimental results with high accuracy. They divide the decision to download a into two stages: first, the decision to play a sample of the song, and second, the ensuing decision to download it or not. They found that, in fact, the percentage of customers who would download a given song after sampling it was consistent across sites. The difference in download totals was due entirely to the first stage, the decision to sample a song in the first place.

And that decision, the researchers concluded, had only an indirect relationship to the songs’ popularity. In the original experiment, one of the sites was a control, while the other eight gave viewers information about the popularity of the songs, measured by total number of downloads. But on those eight sites, the number of downloads also determined the order in which the songs were displayed. The MIT researchers’ analysis suggests that song ordering may have had as much to do with the unpredictability across sites as the popularity information.

“We’ve known forever that people are lazy, and they’ll pick the songs on the top,” Pentland says. “There’s all this hype about new-age marketing and social-media marketing. Actually, it comes down to just the stuff that they did in 1904 in a country store: They put certain things up front so you’d see them.”

Quality, not quantity

In their work, the MIT researchers interpret the likelihood that sampling a song will result in its being downloaded as a measure of quality. Since that measure was consistent across sites, using it, rather than volume of downloads, to order song listings would probably mitigate some of the unpredictability that the Columbia researchers found.

Even on sites where the number of downloads determines song ordering, high-quality songs will gradually creep up the rankings, because, by definition, they net more downloads per sample than low-quality songs do. But “it does take a long time for the market to fully equilibrate,” Krumme says. “Precisely how long it would take for the highest-quality songs to rise to the top depends on the specifics of a particular market.”

“The model that they propose does a good job of providing insight into what’s happening in the experiment,” says Matthew Sagalnik, an assistant professor in the Department of Sociology at Princeton University, who as a graduate student at Columbia was lead author on the original paper. “I think it’s neat that such a simple model is able to reproduce the results of the experiment with pretty high fidelity.”

“I think that their predictions about the long-run dynamics are interesting,” Sagalnik adds, “and I hope that they would be tested with additional experiments.”

Explore further: Computerized emotion detector

Related Stories

Birds invent new songs in evolutionary fast-forward

May 02, 2011

Native North Island saddlebacks have developed such distinctive new songs in the last 50 years that it is not clear if birds on one island recognise what their neighbors are singing about, a Massey University ...

Fruit fly antennae are tuned in

Apr 01, 2011

(PhysOrg.com) -- The antennal ears of different fruit fly species are actively tuned to high-frequency components of their respective mating songs, according to new research led by University College London ...

Recommended for you

Computerized emotion detector

21 hours ago

Face recognition software measures various parameters in a mug shot, such as the distance between the person's eyes, the height from lip to top of their nose and various other metrics and then compares it with photos of people ...

Cutting the cloud computing carbon cost

Sep 12, 2014

Cloud computing involves displacing data storage and processing from the user's computer on to remote servers. It can provide users with more storage space and computing power that they can then access from anywhere in the ...

Teaching computers the nuances of human conversation

Sep 12, 2014

Computer scientists have successfully developed programs to recognize spoken language, as in automated phone systems that respond to voice prompts and voice-activated assistants like Apple's Siri.

Mapping the connections between diverse sets of data

Sep 12, 2014

What is a map? Most often, it's a visual tool used to demonstrate the relationship between multiple places in geographic space. They're useful because you can look at one and very quickly pick up on the general ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Squirrel
not rated yet May 31, 2012
The paper "Quantifying Social Influence in an Online Cultural Market" can be found here (it is not behind a paywall).
http://www.ploson....0033785