WiggleZ project reaches new heights in measuring neutrino mass

Apr 30, 2012

The lightest known subatomic particles in the Universe are now able to be more accurately scrutinised, in light of new astronomic research two years in the making.

After more than 200 nights of galaxy-gazing and thousands of calculations, an international team of astronomers, including researchers from The University of Queensland, has published a new study that has made a remarkable headway in the way the mass of are measured.

The study, published in the May edition of Physical Review D Rapid Communication concludes that cosmological galaxy measurements are more effective than laboratory experiments on Earth when it comes to constraining for measurement.

Neutrinos are the subatomic-sized floating in the and the lightest massive known particles, yet they are traditionally treated as not having any mass.

Lead author of the study, Dr Signe Riemer-Sørensen of the UQ School of Mathematics and Physics, said this new study would allow researchers to gain a more accurate and highly sensitive picture of neutrino mass, and this could ultimately lead to new understandings of the Universe.

“This research paves the way for more sensitive future galaxy surveys to understand the mysterious workings of the Universe, and will help in new advancements such as improved models of supernova explosions and in designing neutrino telescopes that can probe much more distant objects than classical telescopes,” said Dr Riemer-Sørensen.

Although laboratory experiments on Earth so far have been able to measure the differences in the masses between the various species of neutrinos, they have been unsuccessful in measuring the absolute neutrino mass with sufficient sensitivity.

Using the Universe as a large particle physics experiment, the team in this study attempted to limit the range of possible neutrino masses by understanding how form.

“One of the major challenges is that galaxy formation is not well-described theoretically,” said Dr Riemer-Sørensen.

“We have tested a range of previously used theories and demonstrated that most of them are not precise enough to use with present and upcoming galaxy surveys with the much-desired higher level of sensitivity to the neutrino mass.”

Using high-quality data from the team's WiggleZ Dark Energy Survey -- a massive three-dimensional galaxy map of 240,000 galaxies -- the researchers in this study applied a mixture of analytical modelling and simulation to achieve their results.

“Despite the modelling challenges, cosmology does a much better job than laboratory experiments when it comes to constraining the neutrino mass,” said Dr Riemer-Sørensen.

The team is currently working on refining the neutrino mass measurement by combining their results with other independent data sets, such as measurements from other astronomical observations.

Other researchers in the study are Professor Michael Drinkwater, Dr Tamara Davis and Dr David Parkinson, all from the UQ School of Mathematics and Physics, as well as researchers from Australia, USA, South Africa, and Canada.

Explore further: Using antineutrinos to monitor nuclear reactors

More information: Phys. Rev. D 85, 081101(R) (2012) DOI: 10.1103/PhysRevD.85.081101

Related Stories

Neutrino mass: 'Ghost particle' sized up by cosmologists

Jun 22, 2010

(PhysOrg.com) -- Cosmologists at UCL (University College London) are a step closer to determining the mass of the elusive neutrino particle, not by using a giant particle detector, but by gazing up into space.

Recommended for you

Using antineutrinos to monitor nuclear reactors

15 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

19 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

Apr 23, 2014

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.