In-situ observations reveal how nanoparticle catalysts lower operating temperatures in fuel cells

Apr 11, 2012 By Renu Sharma

Researchers from the NIST Center for Nanoscale Science and Technology and Arizona State University have used environmental transmission electron microscopy (ETEM) to explain the role of nickel nanoparticles in lowering the operating temperature of praseodymium doped ceria (PDC) anodes in solid-oxide fuel cells (SOFCs). 

These fuel cells are a promising technology for efficiently converting chemical fuels into electricity, and PDC-based have the potential to replace the more commonly used and yttria-stabilized zirconia anodes, which operate at higher temperatures (typically in excess of 1000 °C) that unfortunately cause the anodes to degrade. 

Nickel and PDC are being investigated as alternative anode materials because they operate at a relatively cool 500 °C to 700 °C, making the anodes more stable.  Using the ETEM, the researchers were able to visualize nanometer-scale structural and chemical changes occurring at the interface between the nickel and the PDC as a function of temperature in an atmosphere of dry hydrogen at 130 Pa, mimicking the partial pressure of hydrogen in a SOFC. 

Using energy-loss spectra, the researchers showed that the introduction of nickel nanoparticles lowered the reduction temperature of the PDC in a 20 nm-deep reduction zone around the interface between the two materials. 

The formation and size of the reduction zone is consistent with two possible mechanisms, each involving the spillover of ambient atomic hydrogen from the nickel to the PDC. 

The researchers believe that understanding and controlling how the nickel catalyze these lower-temperature reactions will enable the development of SOFCs that are both efficient and long-lived. 

Explore further: Team pioneers strategy for creating new materials

More information: Direct observation of hydrogen spillover in Ni-loaded Pr-doped ceria, V. Sharma, et al, Catalysis Today 180, 2-8 (2012).

add to favorites email to friend print save as pdf

Related Stories

The goal? Cooler, smaller, fuel cells

Jun 10, 2011

Fuel cells that use hydrogen or methane to generate electricity in chemical reactions while shedding only harmless byproducts like water are dream products for engineers, environmentalists and business leaders searching for ...

World's fastest nickel-based complex

Jul 25, 2011

(PhysOrg.com) -- Scientists at Pacific Northwest National Laboratory's Center for Molecular Electrocatalysis and Villanova University designed a nickel-based complex that more than doubled previously reported ...

Recommended for you

Team pioneers strategy for creating new materials

6 hours ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

11 hours ago

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Breaking benzene

Aug 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0