Drawing connections between food webs

Apr 04, 2012

Ecosystems today face various threats, from climate change to invasive species to encroaching civilization. If we hope to protect these systems and the species that live in them, we must understand them — an extremely difficult and time-consuming task, given the world's seemingly endless number of ecosystems, each with its own complex dynamics and relationships.

But what if we could pinpoint the most powerful players in a given food web, those "keystone" without which the entire ecosystem would collapse? And what if we could predict how changes to an ecosystem would affect its various organisms based on data collected from another ecosystem half a world away?

Researchers from Northwestern University, with partners from New Zealand's University of Canterbury and the Spanish Research Council, say we can. Their research has revealed commonalities about species' roles in that could hold the key to success in conversation efforts and preservation of ecological communities worldwide.

The paper, "Evolutionary Conservation of Species' Roles in Food Webs," was published March 23 in the journal Science.

By studying the roles played by species in 32 ecological communities, the researchers found a species' role, or importance, in its food web isn't dependent upon its geographic location or even which species are present. Instead, a species' importance depends upon the type of species it is and its evolutionary history.

"The gray wolf, for instance, is a keystone species," said Irmak Sirer, a PhD candidate in the lab of Luis Amaral, professor of chemical and biological engineering at McCormick. "When the wolves disappeared from Yellowstone National Park for 70 years, a broad array of species bottomed out. When they were reintroduced in 1995, willows, songbirds, beavers, and many other species suddenly flourished."

"Based on our research, we now know that other species with a similar evolutionary history to this wolf hold equally important roles in their own food webs — even if they are on a different continent and look nothing alike," Sirer added. "And we know they must be protected to avoid further ecological damage."

The authors compared species found in New Zealand with their closely-related species found elsewhere. "We tend to think of ecosystems from New Zealand to be completely different to their foreign counterparts because, at least to the naked eye, they are," said lead author Daniel Stouffer, a researcher at the University of Canterbury who received his PhD in chemical and biological engineering from Northwestern.

However, the researchers found that species from the most important taxonomic groups in New Zealand also tended to be the most important elsewhere, and that their roles may be a direct result of evolution.

This knowledge allows conservationists to focus their efforts on the most vital parts of an ecosystem, while also predicting what species might be threatened by changes like or climbing temperatures.

"Because this is a universal result, we can start developing methods of conservation that would apply to any food web," Sirer said. "This might be one of the first steps toward global conservation efforts."

Explore further: Call for alternative identification methods for endangered species

Related Stories

Species reemergence after collapse: Possible but different

May 20, 2011

Species pairs that disappear through hybridization after human-induced changes to the environment can reemerge if the disturbance is removed, according to a new mathematical model that shows the conditions under which reemergence ...

A new model for understanding biodiversity

Nov 21, 2011

(PhysOrg.com) -- Animals like foxes and raccoons are highly adaptable. They move around and eat everything from insects to eggs. They and other "generalist feeders" like them may also be crucial to sustaining ...

Extreme weather threatens rich ecosystems

Mar 30, 2012

Extreme weather such as hurricanes, torrential downpours and droughts will become more frequent in pace with global warming. Consequently, this increases the risk for species extinction, especially in bio diverse ecosystems ...

Recommended for you

Scientists tether lionfish to Cayman reefs

6 hours ago

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

India's ancient mammals survived multiple pressures

Apr 17, 2014

Most of the mammals that lived in India 200,000 years ago still roam the subcontinent today, in spite of two ice ages, a volcanic super-eruption and the arrival of people, a study reveals.

User comments : 0

More news stories

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...