Astrophysicists uncover secret origin of brown dwarfs

Apr 26, 2012

The origin of brown dwarfs is one of the great unsolved mysteries facing astrophysicists today. In a new study published in The Astrophysical Journal, Western’s Shantanu Basu and University of Vienna’s Eduard Vorobyov present a new model of brown dwarf formation that unites the best parts of existing theories and has far-reaching implications for understanding the population of low mass objects in the universe.

Brown dwarfs are astronomical objects that have too little to be called stars and too much mass to be called planets. Only a theoretical concept until discovered in the mid-1990s, several hundred brown dwarfs have now been identified through infrared telescopes and surveys.

“There could be significant mass in the universe that is locked up in brown dwarfs and contribute at least part of the budget for the universe’s missing dark matter,” said Basu, a professor in Western’s Department of Physics and Astronomy. “And the common idea that the first stars in the early universe were only of very high mass may also need revision.”

One leading theory suggests that brown dwarfs form like stars through the direct collapse of low mass interstellar gas cloud fragments while another speculates that they are formed after the collapse of more massive cloud fragments yield multiple bodies including brown dwarfs that are ejected due to the mutual interaction of the bodies. Both scenarios produce conceptual and theoretical problems and are equally challenged and supported by scientists.

Employing numerical hydrodynamic simulations – carried out in part by utilizing the high performance computing capabilities of Western's SHARCNET – Basu and Vorobyov show the evolution of the swirling nebular disc of gas around a newly formed protostar (or a star that is still forming) is critical to brown dwarf formation. Such a disc of gas has long been postulated to exist around the early Sun and the planets in the Solar System are thought to have condensed out of such a disc.

In the study, Basu and Vorobyov prove that the early life of a disc is characterized by the formation of multiple fragments that orbit the central protostar and that the interaction of fragments leads to the ejection of some brown dwarf fragments that have yet to fully form. The ejection speeds in this mechanism are much lower than in a model where ejections occur only for fully formed brown dwarfs and provide a more favorable comparison with observations that show that are present in close proximity to young stars.

Explore further: Image: Hubble sees turquoise-tinted plumes in Large Magellanic Cloud

add to favorites email to friend print save as pdf

Related Stories

Smashing young stars leave dwarfs in their wake

Jun 09, 2006

Astronomers have discovered that the large disks of gas and dust around young stars will fragment if two young stars pass close to each other and form smaller brown dwarfs stars with disks of their own.

Baby stars born to 'napping' parents

Mar 09, 2011

(PhysOrg.com) -- Cardiff University astronomers believe that a young star's long "napping" could trigger the formation of a second generation of smaller stars and planets orbiting around it.

Brown Dwarfs Don't Hang Out With Stars

Jan 05, 2009

(PhysOrg.com) -- Brown dwarfs, objects that are less massive than stars but larger than planets, just got more elusive, based on a study of 233 nearby multiple-star systems by NASA's Hubble Space Telescope. ...

Super cold brown dwarf or is it a planet?

Mar 23, 2011

(PhysOrg.com) -- In a month that has already announced the discovery of a brown dwarf 75 light-years from Earth, NASA’s infrared Spitzer Space Telescope has found what could prove to be an even cooler, ...

Astronomers find bounty of failed stars

Oct 11, 2011

A University of Toronto-led team of astronomers has discovered over two dozen new free-floating brown dwarfs, including a lightweight youngster only about six times heftier than Jupiter, that reside in two ...

Two new brown dwarf Solar neighbors discovered

Jul 15, 2011

Scientists from the Leibniz Institute for Astrophysics Potsdam (AIP) have discovered two new brown dwarfs at estimated distances of only 15 and 18 light years from the Sun. For comparison: The next star to ...

Recommended for you

Big black holes can block new stars

19 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

POLARBEAR seeks cosmic answers in microwave polarization

20 hours ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

New radio telescope ready to probe

23 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

User comments : 0