Baby stars born to 'napping' parents

Baby stars born to 'napping' parents

(PhysOrg.com) -- Cardiff University astronomers believe that a young star's long "napping" could trigger the formation of a second generation of smaller stars and planets orbiting around it.

It has long been suspected that the build up of material onto is not continuous but happens in episodic events, resulting in short outbursts of energy from these stars.

However, this has been largely ignored in models of star formation.

Now, by developing advanced computer models to simulate the behaviour of young stars, Cardiff University Astrophysicists Dr Dimitris Stamatellos and Professor Anthony Whitworth, along with Dr David Hubber from the University of Sheffield, have offered a new insight in .

While stars are young they are surrounded by discs of gas and dust, and grow by accreting material from these discs. The discs may break-up to give birth to smaller stars, planets and - objects larger than planets but not large enough to burn hydrogen like our Sun.

A star acquires much of its mass by accreting material from a disc. Accretion is probably not continuous but episodic. We have developed a method to include the effects of episodic accretion in simulations of star formation. Episodic accretion results in bursts of radiative feedback, during which a protostar is very luminous, and its surrounding disc is heated and stabilised. These bursts typically last only a few hundred years. In contrast, the lulls between bursts may last a few thousand years; during these lulls the luminosity of the protostar is very low, and its disc cools and fragments. Thus, episodic accretion enables the formation of low-mass stars, brown dwarfs and planetary-mass objects by disc fragmentation. If episodic accretion is a common phenomenon among young protostars, then the frequency and duration of accretion bursts may be critical in determining the low-mass end of the stellar initial mass function.

"We know that young stars spend most of their early lives sleeping," said Dr Dimitris Stamatellos. "After they have their lunch, a large chunk of dust and gas from their discs, they take a nap that lasts for a few thousand years. During this nap their brightness is very low.

"As they sleep, their discs grow in mass, but they remain relatively cool, despite the presence of stars right at their centres. Eventually, these discs become unstable and fragment to form low-mass stars and substellar objects, like brown dwarfs and planets."

To date, research has suggested that the radiation from the could heat and stabilize the disc, suppressing its breaking up.

However, the researchers discovered that there is ample time in between outbursts to allow the disc to break up and give birth to a new generation of low-mass stars, brown dwarfs, and planets.

The new theory provides an explanation for the formation and the properties of stars with masses below a fifth of that of our Sun, which are estimated to constitute more than 60% of all stars in our Galaxy.

"Our findings suggest that disc fragmentation is possible in nature," says Dr Stamatellos.

"It is important now to investigate whether this is the dominant mechanism for the formation of low-mass stars and brown dwarfs," he adds.


Explore further

Smashing young stars leave dwarfs in their wake

More information: The research was published in the Astrophysical Journal.
Provided by Cardiff University
Citation: Baby stars born to 'napping' parents (2011, March 9) retrieved 17 September 2019 from https://phys.org/news/2011-03-baby-stars-born-napping-parents.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Mar 09, 2011
Congratulations on this re-examination of the mechanism of star formation.

Our research also suggests that fragmentation precedes the formation of a new star on the fragment [1].

We conclude that the initial fragmentation is powered by neutron repulsion, and that neutron repulsion also causes neutron-emission and neutron-decay into a photosphere, the glowing globe of hydrogen that hides the stars compact source of energy.

1. "Neutron Repulsion," The APEIRON Journal in press (2011), 19 pages

http://arxiv.org/...2.1499v1

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more