Protein assassin: Scientists find that the unfolded end of a protein can kill E. coli-like bacteria selectively

Feb 23, 2012

When bacteria wage a turf war, some of the combatants have an extra weapon. Certain strains of the bacteria E. coli produce proteins that kill competing E. coli and other like microbes, and researchers from Newcastle University in England have recently discovered something surprising about one of these lethal proteins: even after the toxic folded portion of the protein is removed, the unfolded end is still deadly. The finding may one day help scientists find new, more targeted ways to kill antibiotic-resistant microbes. The researchers will present their results at the 56th Annual Meeting of the Biophysical Society (BPS), held Feb. 25-29 in San Diego, Calif.

The Newcastle research team focused their attention on a specific bacteria-killing called Colicin N. Scientists traditionally divide the structure of Colicin N into three separate parts, or domains: a receptor that helps the colicin latch onto the bacterial membrane; a translocation domain that helps the colicin wiggle into the cells; and a toxic domain that punches holes in the membrane from the inside, so that potassium, an element essential to proper cell function, leaks out of the .

Although scientists believe that the translocation domain of Colicin N, called ColN-T, plays a role in transporting the protein across the , the exact mechanism is not well understood. In order to learn more about how ColN-T functions, the Newcastle researchers isolated this part of the protein and added it to a fluid containing Colicin N-susceptible E. coli. The team thought that, by itself, ColN-T might block the translocation pathways, giving the bacteria a measure of protection against full-length Colicin N; but instead the E. coli started leaking potassium and dying shortly after the ColN-T was introduced into their environment. It turned out the seemingly disarmed protein could still kill.

The results were "entirely unexpected," says Chris Johnson, a at Newcastle University and a member of the team. "Until recently we had always assumed that the role of the translocation domain was solely to help transport the toxic pore-forming domain of Colicin N into the cell."

As yet, the scientists are unsure how ColN-T single-handedly causes bacterial membranes to leak , but determining this mechanism is the team's next primary goal. "We have lots of new experiments to design," says Johnson.

ColN-T has a number of properties that make it an appealing model for the development of new antibacterial therapies. Unlike most antimicrobial proteins, ColN-T does not disrupt model membranes, and its activity is strictly dependent upon two receptor proteins unique to E. coli-like bacteria. This specificity, along with ColN-T's small size, means that once scientists know the unfolded protein's killing secrets, they may be able to design small molecule mimics that use the same mechanism to slay E. coli-like bacteria in humanity's own turf wars with the microbes.

Explore further: Scientists throw light on the mechanism of plants' ticking clock

More information: The presentation, "Targeted killing of Escherichia coli by an unfolded protein," is at 10:30 a.m. on Wednesday, Feb. 29, 2012, in the San Diego Convention Center, Hall FGH. ABSTRACT: http://tinyurl.com/7vjmqc7

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

E. coli packs a punch - an intestinal insight from ISIS

Dec 23, 2011

Recent studies at the ISIS neutron source, the Science and Technology Facilities Council’s world leading research centre, have given a new insight into how E. coli bacteria, often associated with food ...

Virus uses 'Swiss Army knife' protein to cause infection

Aug 17, 2011

In an advance in understanding Mother Nature's copy machines, motors, assembly lines and other biological nano-machines, scientists are describing how a multipurpose protein on the tail of a virus bores into ...

Decoding the molecular machine behind E. coli and cholera

Feb 09, 2012

Scientists from Queen Mary, University of London have discovered the workings behind some of the bacteria that kill hundreds of thousands every year, possibly paving the way for new antibiotics that could treat infections ...

Recommended for you

Illuminating the dark side of the genome

2 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

User comments : 0