Protein assassin: Scientists find that the unfolded end of a protein can kill E. coli-like bacteria selectively

Feb 23, 2012

When bacteria wage a turf war, some of the combatants have an extra weapon. Certain strains of the bacteria E. coli produce proteins that kill competing E. coli and other like microbes, and researchers from Newcastle University in England have recently discovered something surprising about one of these lethal proteins: even after the toxic folded portion of the protein is removed, the unfolded end is still deadly. The finding may one day help scientists find new, more targeted ways to kill antibiotic-resistant microbes. The researchers will present their results at the 56th Annual Meeting of the Biophysical Society (BPS), held Feb. 25-29 in San Diego, Calif.

The Newcastle research team focused their attention on a specific bacteria-killing called Colicin N. Scientists traditionally divide the structure of Colicin N into three separate parts, or domains: a receptor that helps the colicin latch onto the bacterial membrane; a translocation domain that helps the colicin wiggle into the cells; and a toxic domain that punches holes in the membrane from the inside, so that potassium, an element essential to proper cell function, leaks out of the .

Although scientists believe that the translocation domain of Colicin N, called ColN-T, plays a role in transporting the protein across the , the exact mechanism is not well understood. In order to learn more about how ColN-T functions, the Newcastle researchers isolated this part of the protein and added it to a fluid containing Colicin N-susceptible E. coli. The team thought that, by itself, ColN-T might block the translocation pathways, giving the bacteria a measure of protection against full-length Colicin N; but instead the E. coli started leaking potassium and dying shortly after the ColN-T was introduced into their environment. It turned out the seemingly disarmed protein could still kill.

The results were "entirely unexpected," says Chris Johnson, a at Newcastle University and a member of the team. "Until recently we had always assumed that the role of the translocation domain was solely to help transport the toxic pore-forming domain of Colicin N into the cell."

As yet, the scientists are unsure how ColN-T single-handedly causes bacterial membranes to leak , but determining this mechanism is the team's next primary goal. "We have lots of new experiments to design," says Johnson.

ColN-T has a number of properties that make it an appealing model for the development of new antibacterial therapies. Unlike most antimicrobial proteins, ColN-T does not disrupt model membranes, and its activity is strictly dependent upon two receptor proteins unique to E. coli-like bacteria. This specificity, along with ColN-T's small size, means that once scientists know the unfolded protein's killing secrets, they may be able to design small molecule mimics that use the same mechanism to slay E. coli-like bacteria in humanity's own turf wars with the microbes.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: The presentation, "Targeted killing of Escherichia coli by an unfolded protein," is at 10:30 a.m. on Wednesday, Feb. 29, 2012, in the San Diego Convention Center, Hall FGH. ABSTRACT: http://tinyurl.com/7vjmqc7

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

E. coli packs a punch - an intestinal insight from ISIS

Dec 23, 2011

Recent studies at the ISIS neutron source, the Science and Technology Facilities Council’s world leading research centre, have given a new insight into how E. coli bacteria, often associated with food ...

Virus uses 'Swiss Army knife' protein to cause infection

Aug 17, 2011

In an advance in understanding Mother Nature's copy machines, motors, assembly lines and other biological nano-machines, scientists are describing how a multipurpose protein on the tail of a virus bores into ...

Decoding the molecular machine behind E. coli and cholera

Feb 09, 2012

Scientists from Queen Mary, University of London have discovered the workings behind some of the bacteria that kill hundreds of thousands every year, possibly paving the way for new antibiotics that could treat infections ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.