New insight from whole-genome sequencing of Europe's 2011 E. coli outbreaks

Feb 06, 2012

Using whole-genome sequencing, a team led by researchers from Harvard School of Public Health (HSPH) and the Broad Institute has traced the path of the E. coli outbreak that sickened thousands and killed over 50 people in Germany in summer 2011 and also caused a smaller outbreak in France. It is one of the first uses of genome sequencing to study the dynamics of a food-borne outbreak and provides further evidence that genomic tools can be used to investigate future outbreaks and provide greater insight into the emergence and spread of infectious diseases.

The study, conducted in collaboration with groups at the Pasteur Institute in France, Assistance Publique-Hôpitaux de Paris, and Statens Serum Institut in Denmark, appears on February 6, 2012 in an advance online edition of Proceedings of the National Academy of Sciences.

"A genome contains the record of a strain's evolutionary history, so by looking at the differences between the genomes of multiple bacteria from an outbreak we can get really useful clues about what happened in the outbreak. In this way, tracking outbreaks is like detective work, and this approach will be a powerful tool in trying to understand future outbreaks," said lead author Yonatan Grad, a research fellow in the Center for Communicable Disease Dynamics, Department of Epidemiology at HSPH and infectious disease physician at Brigham and Women's Hospital in Boston.

"This work is a testament to the power of and analysis to shed light on the mechanisms that drive disease outbreaks," said co-senior author Deborah Hung, a core faculty member at the Broad Institute, an assistant professor at Massachusetts General Hospital and Harvard Medical School, and an infectious disease physician at Brigham and Women's Hospital. "We can see things that we simply couldn't see before, and that holds promise for improving public health."

The outbreak in Germany, which was caused by the strain E. coli O104:H4, led to around 4,000 cases of bloody diarrhea, 850 cases of hemolytic uremic syndrome (HUS), which can lead to kidney failure, and over 50 deaths. The source of the outbreak was traced to sprouts from an organic farm in Germany. In France, where 15 people were sickened with bloody diarrhea that progressed to HUS in nine people, the source of the outbreak was sprouts, germinated from seeds purchased at a garden retailer, that were served at a children's community center buffet. European investigators, using traditional epidemiological methods, traced the outbreaks to a shipment of seeds from Egypt that arrived in Germany in December 2009.

The researchers, led by Grad and senior authors Hung and William Hanage, associate professor of epidemiology at HSPH, analyzed isolates of E. coli bacteria from both the German and French outbreaks. Based on conventional molecular epidemiological analysis, the E. coli strains from the outbreaks in and France appear identical.

However, by harnessing the Broad's expertise in whole-genome sequencing and analysis, the researchers were able to determine that there were small, but measurable, differences among the isolates. They made two surprising findings: All the strains connected to the larger German outbreak were found to be nearly identical, while the strains in France showed greater diversity; and the German isolates appeared to be a subset of the diversity seen in the French isolates.

"If genomes have fewer differences than we expect, like the German outbreak, it suggests that the might have passed through a bottleneck. A bottleneck might be something like disinfection procedures that killed most but not all of the bugs, or maybe passage through a single infected individual," said Hanage.

Another hypothesis offered by the researchers is that there was uneven distribution of diversity in the original shipment of contaminated seeds.

As costs for genomic sequencing decline, these tools, combined with traditional epidemiological techniques, can provide greater insight into the emergence and spread of and will help guide preventive public health measures in the future.

Explore further: Project launched to study evolutionary history of fungi

More information: "Genomic Epidemiology of the Escherichia coli O104:H4 Outbreaks in Europe, 2011," Yonatan H. Grad, Marc Lipsitch, Michael Feldgarden, Harindra M. Arachchi, Gustavo C. Cerqueira, Michael FitzGerald, Paul Godfrey, Brian J. Haas, Cheryl Murphy, Carsetn Russ, Sean Sykes, Bruce J. Walker, Jennifer R. Wortman, Sarah Young, Qiandong Zeng, Amr Abouelleil, James Bochicchio, Sara Chauvin, Timothy DeSmet, Sharvari Gujja, Caryn McCowan, Anna Montmayeur, Scott Stellman, Jakob Frimodt-Moller, Andreas M. Petersen, Carsten Struve, Karen A. Krogfelt, Edouard Bingen, Francois-Xavier Weill, Eric S. Lander, Chad Nusbaum, Bruce W. Birren, Deborah T. Hung, William P. Hanage, Proceedings of the National Academy of Sciences, online February 6, 2012.

Related Stories

E. coli outbreak may be traced to Egypt seeds

Jun 30, 2011

(AP) -- European food and disease prevention authorities said Wednesday they are investigating whether the E. coli outbreak in Germany and France may be traced back to fenugreek seeds imported from Egypt either in 2009 or ...

French woman dies of E. coli

Jul 02, 2011

(AP) -- A 78-year-old French woman died early Saturday morning from complications of E. coli infection but a doctor said she was not suffering from the strain that has infected many other people in France and Germany.

Experts: Seeds tainted by E. coli still out there

Jun 30, 2011

(AP) -- Health experts warned Thursday there could be more E. coli cases across Europe and elsewhere after finding that recent deadly outbreaks were probably linked to contaminated Egyptian fenugreek seeds.

E. coli death toll up to at least 47

Jun 27, 2011

(AP) -- The death toll in Europe's E. coli outbreak has risen by three to at least 47, German authorities said Monday, even as new infections continue to tail off.

Recommended for you

Project launched to study evolutionary history of fungi

1 hour ago

The University of California, Riverside is one of 11 collaborating institutions that have been funded a total of $2.5 million by the National Science Foundation for a project focused on studying zygomycetes – ancient li ...

Different watering regimes boost crop yields

5 hours ago

Watering tomato plants less frequently could improve yields in saline conditions, according to a study of the impact of water and soil salinity on vegetable crops.

Woolly mammoth genome sequencer at UWA

6 hours ago

How can a giant woolly mammoth which lived at least 200,000 years ago help to save the Tasmanian Devil from extinction? The answer lies in DNA, the carrier of genetic information.

Battling superbugs with gene-editing system

Sep 21, 2014

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

User comments : 0