Unraveling the Chinese cabbage genome

Jan 20, 2012
Figure 1: The Chinese cabbage, Brassica rapa subspecies pekinensis. Credit: 2011 Hiroshi Abe

Clues into the evolutionary diversification of brassicas have emerged from the draft Chinese cabbage genome sequence. Brassica crops include many agriculturally important vegetables, such as Chinese cabbage, pak choi, turnip, broccoli, cabbage and cauliflower, as well as various oilseed crops.

The sequencing focused on Chinese cabbage, Brassica rapa pekinensis (Fig. 1), and was undertaken by the international Brassica rapa Genome Sequencing Project Consortium. The work was underpinned by the previously published of the premier model of , Arabidopsis thaliana. This species is related to B. rapa, with which it shared a .

“Brassicas come in many shapes and sizes, and even individual species show considerable morphological variation. Genome information helps us understand the genetic basis of this diversity,” explains consortium member Hiroshi Abe of Japan’s RIKEN BioResource Center, one of the three biggest Arabidopsis stock centers in the world. “We developed genomic resources for Brassica rapa and contributed to the gene annotation in this project.”

New plant species generally arise through hybridization, involving whole genome duplications, followed by rapid DNA sequence divergence under natural selection, chromosomal rearrangements and extensive gene loss. Indeed, plant biologists have observed whole-genome duplication in all plant genomes sequenced to date, including that of A. thaliana. In addition, previous physical mapping studies revealed a whole genome triplication event in the Brassica lineage, after its divergence from the Arabidopsis lineage at least 13–17 million years ago.

The genome sequence assembled by the Consortium covers more than 98% of the DNA encoding genes. By analyzing the sequence in detail, the researchers were able to investigate the evolutionary and functional consequences of the whole genome triplication event. 

The researchers identified 41,174 protein-encoding genes belonging to 16,917 separate gene families. By comparing the sequences of Brassica genes to those of A. thaliana, they were able to relate gene structures in these two plants. They found that the extent of gene loss among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of ancestral genes. Based on their finding, the researchers believe that variation in the number of members of gene families present in the genome probably contributes to the remarkable morphological plasticity of Brassica species.

“We hope that our findings will contribute to the breeding of improved Brassica oil and vegetable crops,” says Abe. “The genomic resources for developed at the RIKEN BioResource Center will soon be made available to the wider research community.”

Explore further: Untangling DNA with a droplet of water, a pipet and a polymer

More information: Brassica rapa Genome Sequencing Project Consortium. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics 43, 1035–1039 (2011).

add to favorites email to friend print save as pdf

Related Stories

Diversity of cabbage species explained

Nov 07, 2011

The cabbage family is well-represented in the vegetable section of the supermarket. The cauliflower, red cabbage and broccoli found there were all bred from the cabbage species Brassica oleraciea. Its sister species Brassica ...

Little plant has big stories to tell

Aug 29, 2011

(PhysOrg.com) -- Understanding which genes control traits, like when a plant will flower, what soil type is best or its ability to persist in drought conditions provides insight into the ability of plants ...

Evolution can cause a rapid reduction in genome size

Apr 21, 2011

(PhysOrg.com) -- It would appear reasonable to assume that two closely related plant species would have similar genetic blueprints. However, scientists from the Max Planck Institute for Developmental Biology ...

Recommended for you

Cultivation of microalgae via an innovative technology

Feb 27, 2015

Preliminary laboratory scale studies have shown consistent biomass production and weekly a thick microalgal biofilm could be harvested. A new and innovative harvesting device has been developed for ALGADISK able to directly ...

Refined method to convert lignin to nylon precursor

Feb 27, 2015

A new study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates the conversion of lignin-derived compounds to adipic acid, an important industrial dicarboxylic acid produced for its use as ...

Living in the genetic comfort zone

Feb 26, 2015

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.