New device for rapid, mobile detection of brain injury

Dec 20, 2011

When accidents that involve traumatic brain injuries occur, a speedy diagnosis followed by the proper treatment can mean the difference between life and death. A research team, led by Jason D. Riley in the Section on Analytical and Functional Biophotonics at the U.S. National Institutes of Health, has created a handheld device capable of quickly detecting brain injuries such as hematomas, which occur when blood vessels become damaged and blood seeps out into surrounding tissues where it can cause significant and dangerous swelling.

A paper describing the team's proof-of-concept prototype for the hematoma detection device appears in the Optical Society's (OSA) open-access journal Express. The device is based on the concept of using instrumental motion as a signal in near-infrared imaging, according to the researchers, rather than treating it as noise. It relies on a simplified single-source configuration with a dual separation detector array and uses motion as a signal for detecting changes in in the tough, outermost membrane enveloping the brain and spinal cord.

One of the primary applications for the finished device will be the rapid screening of patients before using more expensive and busy CT and MRI imaging techniques. In cases where CT and MRI imaging facilities aren't available, such as battlefields or on the scene of accidents, the team believes near-infrared imaging will help to determine the urgency of patient transport and treatment, as well as provide a means of monitoring known hematomas at the bedside or outpatient clinic.

Explore further: Engineers find a way to win in laser performance by losing

More information: Paper: "A hematoma detector – A practical application of instrumental motion as a signal in near infra-red imaging," Biomedical Optics Express, Vol. 3, Issue 1, pp. 192-205 (2012).

add to favorites email to friend print save as pdf

Related Stories

3-D ultrasound scanner provides in-depth view of the brain

Jun 20, 2007

Biomedical engineers at Duke's Pratt School of Engineering have adapted a three-dimensional ultrasound scanner that might guide minimally invasive brain surgeries and provide better detection of a brain tumor’s location.

Recommended for you

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

User comments : 0