New device for rapid, mobile detection of brain injury

Dec 20, 2011

When accidents that involve traumatic brain injuries occur, a speedy diagnosis followed by the proper treatment can mean the difference between life and death. A research team, led by Jason D. Riley in the Section on Analytical and Functional Biophotonics at the U.S. National Institutes of Health, has created a handheld device capable of quickly detecting brain injuries such as hematomas, which occur when blood vessels become damaged and blood seeps out into surrounding tissues where it can cause significant and dangerous swelling.

A paper describing the team's proof-of-concept prototype for the hematoma detection device appears in the Optical Society's (OSA) open-access journal Express. The device is based on the concept of using instrumental motion as a signal in near-infrared imaging, according to the researchers, rather than treating it as noise. It relies on a simplified single-source configuration with a dual separation detector array and uses motion as a signal for detecting changes in in the tough, outermost membrane enveloping the brain and spinal cord.

One of the primary applications for the finished device will be the rapid screening of patients before using more expensive and busy CT and MRI imaging techniques. In cases where CT and MRI imaging facilities aren't available, such as battlefields or on the scene of accidents, the team believes near-infrared imaging will help to determine the urgency of patient transport and treatment, as well as provide a means of monitoring known hematomas at the bedside or outpatient clinic.

Explore further: The first direct-diode laser bright enough to cut and weld metal

More information: Paper: "A hematoma detector – A practical application of instrumental motion as a signal in near infra-red imaging," Biomedical Optics Express, Vol. 3, Issue 1, pp. 192-205 (2012).

add to favorites email to friend print save as pdf

Related Stories

3-D ultrasound scanner provides in-depth view of the brain

Jun 20, 2007

Biomedical engineers at Duke's Pratt School of Engineering have adapted a three-dimensional ultrasound scanner that might guide minimally invasive brain surgeries and provide better detection of a brain tumor’s location.

Recommended for you

'Comb on a chip' powers new atomic clock design

Jul 22, 2014

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Creating optical cables out of thin air

Jul 22, 2014

Imagine being able to instantaneously run an optical cable or fiber to any point on earth, or even into space. That's what Howard Milchberg, professor of physics and electrical and computer engineering at ...

User comments : 0