Chemists find new way to break amide bonds

December 16, 2011

( -- Researchers in the University of Bristol's School of Chemistry have found a way to accelerate the breakdown of amide bonds.

The work, published in Angewandte Chemie, features as the lead highlight in the American Chemical Society's C&ENews this week.

An amide is an organic compound containing a carbonyl group (R-C=O) linked to a nitrogen atom (N).  The bonds in an amide are notoriously difficult to break: reaction times under mild, neutral-pH conditions are over 100 years.  The only way to make amide bonds break down faster without resorting to acids, bases, and catalysts is to twist them physically.

Now, Professor Guy Lloyd-Jones and Professor Kevin Booker-Milburn and colleagues have demonstrated that amide bonds (–CO–NH–) can be broken down much more easily by attaching an electron-withdrawing group (R) to an α carbon and bulky substituents (R') to the nitrogen.  The groups induce the α carbon to lose a proton and the nitrogen to gain one.  This results in R–HC––CO–HN+–R'2 which expels the bulky group HN–R'2, thus breaking the amide bond.

The method may help explain how some cellular enzymes break amide bonds and will make it easier to carry out amide-based reactions.

Professor Tim Gallagher, Head of the School of Chemistry said: “This is an intriguing reaction, all the more so because we think of amides as such stable entities.  Achieving this process under mild conditions has defied some of the best brains for years and this paper presents and explains the solution against an elegant background of observation and understanding.”

Explore further: Converting Nitrogen to a More Useful Form

More information: ‘Switching Pathways: Room-Temperature Neutral Solvolysis and Substitution of Amides’ by Marc Hutchby, Chris E. Houlden, Mairi F. Haddow, Simon N. G. Tyler, Guy C. Lloyd-Jones and Kevin I. Booker-Milburn in Angew. Chem. Int. Ed DOI: 10.1002/anie.201107117

Related Stories

Converting Nitrogen to a More Useful Form

January 9, 2007

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot ...

New way to break some of the strongest chemical bonds

December 16, 2009

( -- Scientists at Cornell University in the U.S. have found a new way of breaking two of the strongest chemical bonds, at ambient temperature and pressure, and this breakthrough could lead to low-energy processes ...

The new kid on the block

June 3, 2011

In synthetic chemistry, ‘carbene’ species—compounds bearing a carbon atom with two unpaired electrons—have a ferocious reputation. Left uncontrolled, they will react with almost any molecule ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.