Just the two of us: Stable dinucleotide-RNA duplexes show promise in biotechnology

Nov 23, 2011

(PhysOrg.com) -- Nucleic acid technology has revolutionized the field of biomedicine, as it can be effectively utilized in the diagnosis, treatment, and prevention of genetic diseases The efficacy of most oligonucleotide therapies is, however, limited as a result of the lability of oligonucleotides in biological fluids and, in particular, their poor delivery to the site of action.

A Swedish team headed by R. Strömberg recently reported in the European Journal of Organic Chemistry that modification of oligonucleotides with a 2'-O-carbamoyl moiety greatly increases the stability of these compounds, which may render their use in constructs for biotechnological and therapeutic applications viable.

Efficiency in the regulation of gene expression is readily achieved if turnover of the target RNA is obtained, but this can only occur if native enzymes recognize the relevant oligonucleotide complex. The ability to catalytically cleave a specific sequence of RNA at a specific site is of high potential value in biotechnology and therapy. Thus, the development of oligonucleotide-based artificial nucleases (OBANs) as artificial enzymes capable of cleaving mRNA sequences arising from genetic or viral diseases is highly sought.

In this context, the scientists set out to modify oligonucleotides with the judicious choice of a 2'-carbamoylmethyl (CM) moiety. Substitution at the 2-position was an important prerequisite, as this has been shown to lead to the formation of stable duplexes with the target , and it was also believed that the CM moiety could further increase the stability of the duplex through hydrogen bonding.

The team was able to show that the 2'-O-carbamoyl modification substantially protected the dinucleotide against enzyme-catalyzed degradation by phosphodiesterase I and made it virtually resistant to degradation by phosphodiesterase II. This, together with the reported increased thermal stability of the duplexes, makes the often-neglected 2'-O-carbamoyl moiety an interesting modification in the pursuit of future compounds that may one day help in the treatment of .

Explore further: Team discovers evolutionary mechanism that allows bacteria to resist antibiotics

More information: Roger Strömberg, Stability of a 2'-O-(Carbamoylmethyl)adenosine-Containing Dinucleotide, European Journal of Organic Chemistry, dx.doi.org/10.1002/ejoc.201101264

Related Stories

Promising new 'antigene' therapy

Oct 21, 2010

Antigene therapy is a promising new treatment strategy that uses a DNA-based drug to pinpoint light energy to a target gene shutting down its activity. A review article published online ahead of print in Oligonucleotides, a peer ...

A new gene silencing platform -- silence is golden

Feb 08, 2009

A team of researchers led by Rutgers' Samuel Gunderson has developed a novel gene silencing platform with very significant improvements over existing RNAi approaches. This may enable the development and discovery of a new ...

A new gene silencing platform -- silence is golden

Feb 15, 2009

A team of researchers led by Rutgers' Samuel Gunderson has developed a novel gene silencing platform with very significant improvements over existing RNAi approaches. This may enable the development and discovery of a new ...

New research links common RNA modification to obesity

Oct 17, 2011

An international research team has discovered that a pervasive human RNA modification provides the physiological underpinning of the genetic regulatory process that contributes to obesity and type II diabetes.

Recommended for you

Cell imaging gets colorful

6 hours ago

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

6 hours ago

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

Chemists find a way to unboil eggs

8 hours ago

UC Irvine and Australian chemists have figured out how to unboil egg whites – an innovation that could dramatically reduce costs for cancer treatments, food production and other segments of the $160 billion ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.