X-rays help advance the battle against heart disease

Oct 06, 2011

(PhysOrg.com) -- Scientists from Imperial College London and Diamond Light Source have revealed the structure of a cholesterol-lowering-drug target. Published in the journal Nature, this finding could lead to much more effective drugs to tackle high cholesterol levels, a condition that increases the risk of heart disease.

The researchers from Imperial College London used intense , generated by the and the European Synchrotron Radiation Facility (ESRF), to determine for the first time the structure of bacterial homologue of the Apical Sodium dependent Bile Acid Transporter (ASBT) protein, a target for drugs since it can affect the level of cholesterol in the blood.

Picture to the right shows a cartoon representation of the ASBTnm structure embedded in the membrane. The protein transports bile acids across the membrane. A bile acid has been trapped in a cavity on the inside face of the protein (shown in wine-red). Energy to drive the transport is provided by . Two sodium ions are bound to the structure and these are shown as pink spheres.

In the liver, cholesterol makes bile acids which are used in the intestine to absorb fat. These bile acids are then reabsorbed by ASBT to be transported to the liver and recycled. It is known that by blocking ASBT, bile returning to the liver are lowered, the liver therefore converts more cholesterol into , which lowers the level of cholesterol in the blood.

“There are currently a number of existing ASBT inhibitors effective in animal models, which were developed without structural knowledge of the protein. Now that we know the shape and size of the drug-binding site within a bacterial model of the protein, this detailed structural information should enable the design of improved drugs which are much more targeted and will “fit” much better.” said Professor So Iwata, David Blow Chair of Biophysics at Imperial College London.

This new knowledge could have a wider impact on drug design. Dr Alexander Cameron from Imperial College London and the Membrane Protein Laboratory at Diamond explains: “As some drugs are poorly absorbed in the intestine or need to be targeted to the liver, ASBT has also received attention as a pro-drug carrier, capable of transporting various compounds coupled to bile acid. This means that there could be scope to improve a number of drugs tackling different problems, for example, cytostatic compounds targeting liver tumours.”

Picture to the left shows a surface representation of ASBTnm looking from the inside face of the membrane showing bile acid bound in a deep cavity.

ASBT is a membrane protein, one of over 7,000 within the human body, of which many are important drug targets. Over 50% of current commercially available drugs target membrane proteins but they are notoriously hard to crystallise – a step that is a pre-requisite in solving protein structures using a synchrotron. Dr David Drew, Royal Society Research Fellow in the Life Sciences Department at Imperial College London said: “Key to the success was to find a suitable detergent that yielded good crystals, this arduous task was facilitated greatly by a large-scale stability screen we carried out."

The ESRF and Diamond Light Source were essential to screen their crystals and collect the data used to obtain the structure. At Diamond they were also able to access specialised equipment that dehydrates the crystals, improving the resolution of their diffraction data, thus leading to much more accurate results.

“Since membrane proteins are so hard to crystallise, you have to make sure that you try everything possible to improve the quality of data you can extract from each crystal. I am very pleased that the technical effort we have put into this development has resulted in some great scientific results. We will continue to integrate this equipment to help our users with new, challenging projects.” said Dr Juan Sanchez-Weatherby, who played a key role in the development of the crystal dehydration equipment.

Explore further: Pterostilbene, a molecule similar to resveratrol, as a potential treatment for obesity

More information: ‘Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT’ Nien-Jen Hu, So Iwata, Alexander D. Cameron, David Drew
DOI: 10.1038/nature10450

Provided by Diamond Light Source

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Cortisol controls recycling of bile acids

Jul 07, 2011

Nature sees to it that we do not have "too much choler" (bile) in our body. A delicately equilibrated regulation system ensures that there is always exactly the right amount of bile in the gallbladder. When ...

Recommended for you

Why plants don't get sunburn

Oct 29, 2014

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.