Research team finds graphene may pave the way for new kinds of optoelectronic devices

Oct 07, 2011 by Bob Yirka weblog

(PhysOrg.com) -- A team comprised of researchers from MIT and Harvard has discovered yet another unique and useful property of graphne, this time it involves optics. As they describe in their paper published in Science, when light, or in this case a laser, is aimed at an object with a graphene surface its electrons get hot and remain so for longer than the rest of the object. This property opens up the door to all kinds of possibilities for new kinds of superfast photo-detectors and energy harvesting technology.

The team, led by Pablo Jarillo-Herrero, made their discovery by creating several so-termed p-n nanojunction devices (the boundary that is formed between P and N type semi-conductors) in their lab and then taking careful measurements of each type using to measure the resultant photocurrent produced. They found that as the power to the laser was increased, so too did the photocurrent. During their experimentation, they found that they could produce up to 5 mA/W, even at a ; a number that is 6 times higher than has been demonstrated with any other optoelectronic device based on . They believe this occurs because the in the graphene aren’t able to transfer their heat very well due to poor coupling with other materials.

Graphene is a one-atom thick layer of carbon that has all manner of unique properties and because of that, new applications for it have been announced periodically since its discovery in 2004. Until now though, very little progress had been made in using it in optoelectronics devices. This new property, called a hot-carrier regime by the team, is unusual because it’s normally only seen in other materials at very cold temperatures. With graphene, however, the effect occurs at low, medium or high temperatures making it a very good candidate for practical applications such as photo-sensing or as part of devices that harvest the energy in sunlight.

The team notes that the discovery of this new property of graphene they describe is likely just the first step in a very long journey. Much more research needs to be done to find out such things as just how efficient can a process using it be made, or what if more layers of graphene are integrated into a device. They plan to continue work in this area, as will others no doubt, now that this new property has come to light.

Explore further: Nanoscale production line for the assembly of biological molecules

More information: Hot Carrier–Assisted Intrinsic Photoresponse in Graphene, Science DOI:10.1126/science.1211384

ABSTRACT
We report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation of wavelength λ = 850 nm at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and density dependence of the photoresponse, provide strong evidence that nonlocal hot-carrier transport, rather than the photovoltaic effect, dominates the intrinsic photoresponse in graphene. This regime, which features a long-lived and spatially distributed hot carrier population, may open the doorway for hot carrier–assisted thermoelectric technologies for efficient solar energy harvesting.

Preprint on arXiv: arxiv.org/abs/1108.3826

add to favorites email to friend print save as pdf

Related Stories

Graphene shows unusual thermoelectric response to light

Oct 07, 2011

Graphene, an exotic form of carbon consisting of sheets a single atom thick, exhibits a novel reaction to light, MIT researchers have found: Sparked by light’s energy, the material can produce electric ...

Toward a better understanding of bilayer graphene

Oct 26, 2010

(PhysOrg.com) -- "Graphene is a very exciting material with a number of interesting possibilities, including for use in electronic devices," Pablo Jarillo-Herrero tells PhysOrg.com. "However, all graphene system ...

New material promises faster electronics

Jun 28, 2011

The novel material graphene makes faster electronics possible. Scientists at the Faculty of Electrical Engineering and Information Technology at the Vienna University of Technology (TU Vienna) developed light-detectors ...

Recommended for you

Biomimetic photodetector 'sees' in color

Aug 25, 2014

(Phys.org) —Rice University researchers have created a CMOS-compatible, biomimetic color photodetector that directly responds to red, green and blue light in much the same way the human eye does.

User comments : 0