Researchers discover material with graphene-like properties

Oct 14, 2011
This image demonstrates how the crystal structure of SrMnBi2 resembles iron pnictides (green: bismuth; blue: strontium; red: manganese) Credit: Image courtesy of HZDR

After the Nobel Prize in Physics was awarded to two scientists in 2010 who had studied the material graphene, this substance has received a lot of attention.

Together with colleagues from Korea, Dr. Frederik Wolff-Fabris from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now developed and analyzed a material which possesses physical properties similar to graphene. Its structure also resembles iron pnictides, i.e. , and it definitely has a promising future: Due to the position of the individual components in the Periodic Table of Elements, some of the atoms can simply be replaced by foreign atoms. This creates new materials which can be superconductive, magnetic, or behave like topological .

Earlier this year, Dr. Jun Sung Kim came from South Korea to use HZDR's Dresden High Magnetic Field Laboratory to analyze a number of material samples in high magnetic fields. For the first time ever, he and his colleague from Dresden, Dr. Frederik Wolff-Fabris, studied the metal SrMnBi2 and observed something amazing: The material consisting of the three elements strontium, manganese, and behaves physically similar to the "magical material" graphene.

Due to its composition and the position of its elements in the Periodic Table, SrMnBi2 permits simple and uncomplicated doping with foreign atoms. Inserting small amounts of foreign atoms alters the physical properties of a material. This might result in the creation of new magnets or superconductors.

SrMnBi2 is currently also in the focus of other research groups; but only the use of ultra-high magnetic fields, such as those generated in the Dresden High Magnetic Field Laboratory, permitted these precise results and, thus, a publication in the scientific journal . Later this year, Dr. Jun Sung Kim will return to Dresden to conduct additional experiments on SrMnBi2 with Dr. Wolff-Fabris.

Explore further: Physicists advance understanding of transition metal oxides used in electronics

More information: "Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2" by Joonbum Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim in Physical Review Letters, Vol. 107, No. 12. DOI:10.1103/PhysRevLett.107.126402

Related Stories

Ferromagnetism plus superconductivity

Apr 18, 2011

It seems impossible: Scientists from the Helmholtz-Zentrum Dresden-Rossendorf and the TU Dresden (Germany) were able to verify with an intermetallic compound of bismuth and nickel that certain materials actually exhibit the ...

Three-dimensional polymer with unusual magnetism

Nov 13, 2006

Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf (Germany) in collaboration with an international ...

Scientists make magnetic new graphene discovery

Apr 14, 2011

(PhysOrg.com) -- University of Maryland researchers have discovered a way to control magnetic properties of graphene that could lead to powerful new applications in magnetic storage and magnetic random access ...

World record: The strongest magnetic fields created

Jun 28, 2011

On June 22, 2011, the Helmholtz-Zentrum Dresden-Rossendorf set a new world record for magnetic fields with 91.4 teslas. To reach this record, Sergei Zherlitsyn and his colleagues at the High Magnetic Field Laboratory Dresden ...

Creating Denser Magnetic Memory

Jul 07, 2009

(PhysOrg.com) -- One of the issues afflicting magnetic memory is the fact that it is difficult to store information for as long as 10 years. In order to overcome this problem, scientists and engineers have been looking for ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.