Researchers discover material with graphene-like properties

Oct 14, 2011
This image demonstrates how the crystal structure of SrMnBi2 resembles iron pnictides (green: bismuth; blue: strontium; red: manganese) Credit: Image courtesy of HZDR

After the Nobel Prize in Physics was awarded to two scientists in 2010 who had studied the material graphene, this substance has received a lot of attention.

Together with colleagues from Korea, Dr. Frederik Wolff-Fabris from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now developed and analyzed a material which possesses physical properties similar to graphene. Its structure also resembles iron pnictides, i.e. , and it definitely has a promising future: Due to the position of the individual components in the Periodic Table of Elements, some of the atoms can simply be replaced by foreign atoms. This creates new materials which can be superconductive, magnetic, or behave like topological .

Earlier this year, Dr. Jun Sung Kim came from South Korea to use HZDR's Dresden High Magnetic Field Laboratory to analyze a number of material samples in high magnetic fields. For the first time ever, he and his colleague from Dresden, Dr. Frederik Wolff-Fabris, studied the metal SrMnBi2 and observed something amazing: The material consisting of the three elements strontium, manganese, and behaves physically similar to the "magical material" graphene.

Due to its composition and the position of its elements in the Periodic Table, SrMnBi2 permits simple and uncomplicated doping with foreign atoms. Inserting small amounts of foreign atoms alters the physical properties of a material. This might result in the creation of new magnets or superconductors.

SrMnBi2 is currently also in the focus of other research groups; but only the use of ultra-high magnetic fields, such as those generated in the Dresden High Magnetic Field Laboratory, permitted these precise results and, thus, a publication in the scientific journal . Later this year, Dr. Jun Sung Kim will return to Dresden to conduct additional experiments on SrMnBi2 with Dr. Wolff-Fabris.

Explore further: How do liquid foams block sound?

More information: "Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2" by Joonbum Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim in Physical Review Letters, Vol. 107, No. 12. DOI:10.1103/PhysRevLett.107.126402

Related Stories

Ferromagnetism plus superconductivity

Apr 18, 2011

It seems impossible: Scientists from the Helmholtz-Zentrum Dresden-Rossendorf and the TU Dresden (Germany) were able to verify with an intermetallic compound of bismuth and nickel that certain materials actually exhibit the ...

Three-dimensional polymer with unusual magnetism

Nov 13, 2006

Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf (Germany) in collaboration with an international ...

Scientists make magnetic new graphene discovery

Apr 14, 2011

( -- University of Maryland researchers have discovered a way to control magnetic properties of graphene that could lead to powerful new applications in magnetic storage and magnetic random access ...

World record: The strongest magnetic fields created

Jun 28, 2011

On June 22, 2011, the Helmholtz-Zentrum Dresden-Rossendorf set a new world record for magnetic fields with 91.4 teslas. To reach this record, Sergei Zherlitsyn and his colleagues at the High Magnetic Field Laboratory Dresden ...

Creating Denser Magnetic Memory

Jul 07, 2009

( -- One of the issues afflicting magnetic memory is the fact that it is difficult to store information for as long as 10 years. In order to overcome this problem, scientists and engineers have been looking for ...

Recommended for you

How do liquid foams block sound?

16 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

When things get glassy, molecules go fractal

20 hours ago

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Vacuum ultraviolet lamp of the future created in Japan

Apr 22, 2014

A team of researchers in Japan has developed a solid-state lamp that emits high-energy ultraviolet (UV) light at the shortest wavelengths ever recorded for such a device, from 140 to 220 nanometers. This ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

( —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.