Researchers discover material with graphene-like properties

Oct 14, 2011
This image demonstrates how the crystal structure of SrMnBi2 resembles iron pnictides (green: bismuth; blue: strontium; red: manganese) Credit: Image courtesy of HZDR

After the Nobel Prize in Physics was awarded to two scientists in 2010 who had studied the material graphene, this substance has received a lot of attention.

Together with colleagues from Korea, Dr. Frederik Wolff-Fabris from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now developed and analyzed a material which possesses physical properties similar to graphene. Its structure also resembles iron pnictides, i.e. , and it definitely has a promising future: Due to the position of the individual components in the Periodic Table of Elements, some of the atoms can simply be replaced by foreign atoms. This creates new materials which can be superconductive, magnetic, or behave like topological .

Earlier this year, Dr. Jun Sung Kim came from South Korea to use HZDR's Dresden High Magnetic Field Laboratory to analyze a number of material samples in high magnetic fields. For the first time ever, he and his colleague from Dresden, Dr. Frederik Wolff-Fabris, studied the metal SrMnBi2 and observed something amazing: The material consisting of the three elements strontium, manganese, and behaves physically similar to the "magical material" graphene.

Due to its composition and the position of its elements in the Periodic Table, SrMnBi2 permits simple and uncomplicated doping with foreign atoms. Inserting small amounts of foreign atoms alters the physical properties of a material. This might result in the creation of new magnets or superconductors.

SrMnBi2 is currently also in the focus of other research groups; but only the use of ultra-high magnetic fields, such as those generated in the Dresden High Magnetic Field Laboratory, permitted these precise results and, thus, a publication in the scientific journal . Later this year, Dr. Jun Sung Kim will return to Dresden to conduct additional experiments on SrMnBi2 with Dr. Wolff-Fabris.

Explore further: Technique simplifies the creation of high-tech crystals

More information: "Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2" by Joonbum Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim in Physical Review Letters, Vol. 107, No. 12. DOI:10.1103/PhysRevLett.107.126402

Related Stories

Ferromagnetism plus superconductivity

Apr 18, 2011

It seems impossible: Scientists from the Helmholtz-Zentrum Dresden-Rossendorf and the TU Dresden (Germany) were able to verify with an intermetallic compound of bismuth and nickel that certain materials actually exhibit the ...

Three-dimensional polymer with unusual magnetism

Nov 13, 2006

Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf (Germany) in collaboration with an international ...

Scientists make magnetic new graphene discovery

Apr 14, 2011

(PhysOrg.com) -- University of Maryland researchers have discovered a way to control magnetic properties of graphene that could lead to powerful new applications in magnetic storage and magnetic random access ...

World record: The strongest magnetic fields created

Jun 28, 2011

On June 22, 2011, the Helmholtz-Zentrum Dresden-Rossendorf set a new world record for magnetic fields with 91.4 teslas. To reach this record, Sergei Zherlitsyn and his colleagues at the High Magnetic Field Laboratory Dresden ...

Creating Denser Magnetic Memory

Jul 07, 2009

(PhysOrg.com) -- One of the issues afflicting magnetic memory is the fact that it is difficult to store information for as long as 10 years. In order to overcome this problem, scientists and engineers have been looking for ...

Recommended for you

New approach to form non-equilibrium structures

16 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

18 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Unleashing the power of quantum dot triplets

22 hours ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Chemist develops X-ray vision for quality assurance

22 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

23 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

User comments : 0