New 'genome mining' technique streamlines discovery from nature

Oct 11, 2011
In the new study researchers studied actinomycete bacteria, known sources of clinical antibiotics and anticancer agents. Credit: Scripps Institution of Oceanography, UC San Diego

A newly developed method for microscopically extracting, or "mining," information from genomes could represent a significant boost in the search for new therapeutic drugs and improve science's understanding of basic functions such as how cells communicate with one another.

Analyzing marine and terrestrial samples obtained from Alaska to San Diego's La Jolla Cove, a research technique jointly created by scientists at Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego and their colleagues taps powerful laboratory instruments to trace promising back to their genomic roots. The method is described in the October 9 online publication of the journal Nature .

Graduate student Roland Kersten developed a technique that employs mass spectrometry, a mass analyzing tool that deciphers the size and makeup of molecules, to reveal core structural details of genomes.

"With only very small amounts of crude sample material, the is able to fragment the unknown peptide into individual amino acid building blocks, so we can then map those to the genome level," said Kersten, who works jointly in Pieter Dorrestein's laboratory at the School of Pharmacy and Brad Moore's lab at the Scripps Center for Marine Biotechnology and Biomedicine. "That provides us information about how to reassemble the molecule."

Knowing such minutiae through this genomic "mining" approach gives scientists a way to connect the produced by organisms back to the enzymes that construct them. These "biosynthetic pathways" are considered prized information in the search for new pharmaceuticals to treat diseases.

Using the new method, the scientists have already discovered two new classes of peptides, compounds made of that serve in functions ranging from communication to protection.

"This represents a in the way that are discovered and characterized, and it's fundamentally different than what's been practiced for the past decades in this field," said Moore, a professor at Scripps and the Skaggs School of Pharmacy and at UC San Diego. "This has the capability of really changing the way natural products, or simply chemicals, are discovered in nature."

Dorrestein, Moore and Kersten are working on ways to automate the process to more quickly analyze biological samples. They believe the new technique will streamline the discovery of promising natural products.

"We're trying to bring up the speed of discovery in chemistry," said Moore. "There's a huge amount of information that's out there and we are only scratching the surface—we'd like to dig a little deeper."

"My UC San Diego colleague Bill Gerwick often states that natural products are a part of central dogma following DNA, RNA and proteins" said Dorrestein. "I agree with Bill, natural products and related chemistries control biology yet these molecules are difficult to characterize. The tools for characterizing the molecules that control biology have not kept pace with modern science. The thought process introduced in this manuscript provides the foundation for finally bringing the fourth branch of central dogma into the realm of modern life sciences."

Explore further: The origin of the language of life

Related Stories

Scientists visualize how bacteria talk to one another

Nov 08, 2009

Using imaging mass spectrometry, researchers at the University of California, San Diego have developed tools that will enable scientists to visualize how different cell populations of cells communicate. Their ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.