Borrowing from brightly-colored birds: Physicists develop lasers inspired by nature

Oct 12, 2011
This is a male eastern bluebird (Sialia sialis, Turdidae). Credit: Image courtesy of Ken Thomas (image in public domain). Published in Soft Matter, 2009, 5, 1792-1795. E.R. Dufresne et al., “Self-assembly of amorphous biophotonic nanostructures by phase separation.” Royal Society of Chemistry. http://dx.doi.org/10.1039/B902775K

Researchers at Yale University are studying how two types of nanoscale structures on the feathers of birds produce brilliant and distinctive colors. The researchers are hoping that by borrowing these nanoscale tricks from nature they will be able to produce new types of lasers—ones that can assemble themselves by natural processes. The team will present their findings at the Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO) 2011, taking place in San Jose, Calif. next week.

Many of the colors displayed in nature are created by that scatter light strongly at specific frequencies. In some cases, these structures create iridescence, where colors change with the angle of view—like the shifting rainbows on a soap bubble. In other cases, the hues produced by the structures are steady and unchanging. The mechanism by which angle-independent colors are produced stumped scientists for 100 years: at first glance, these steady hues appeared to have been produced by a random jumble of proteins. But when researchers zoomed in on small sections of the protein at a time, quasi-ordered patterns began to emerge. The scientists found that it is this short-range order that scatters light preferentially at specific frequencies to produce the distinctive hues of a bluebird's wings, for example.

This is a closeup of a back contour feather barb from a male eastern bluebird; demonstrates a protein with channel-type nanostructure. (Scale bar = 500 nanometers.) Credit: Image courtesy of Richard Prum Lab / Yale University. Published in Soft Matter, 2009, 5, 1792-1795. E.R. Dufresne et al., “Self-assembly of amorphous biophotonic nanostructures by phase separation.” Royal Society of Chemistry. http://dx.doi.org/10.1039/B902775K

Inspired by feathers, the Yale physicists created two lasers that use this short-range order to control light. One model is based on feathers with tiny spherical air cavities packed in a protein called beta-keratin. The laser based on this model consists of a semiconductor membrane full of tiny air holes that trap light at certain frequencies. Quantum dots embedded between the holes amplify the light and produce the coherent beam that is the hallmark of a laser. The researchers also built a network laser using a series of interconnecting nano-channels, based on their observations of feathers whose beta-keratin takes the form of interconnecting channels in "tortuous and twisting forms." The network produces its emission by blocking certain colors of light while allowing others to propagate. In both cases, researchers can manipulate the lasers' colors by changing the width of the nano-channels or the spacing between the nano-holes.

This is a network laser based on feathers with the channel-type nanostructure. This laser consists of interconnecting nano-channels (white) in a semiconductor membrane. (Scale bar = 2 micrometers.) Credit: Image courtesy of Hui Cao Research Laboratory / Yale University

What makes these short-range-ordered, bio-inspired structures different from traditional lasers is that, in principle, they can self-assemble, through natural processes similar to the formation of gas bubbles in a liquid. This means that engineers would not have to worry about the nanofabrication of the large-scale structure of the materials they design, resulting in cheaper, faster, and easier production of lasers and light-emitting devices.

One potential application for this work includes more efficient solar cells that can trap photons before converting them into electrons. The technology could also yield long-lasting paint, which could find uses in processes such as cosmetics and textiles. "Chemical paint will always fade," says lead author Hui Cao. But a physical "paint" whose nanostructure determines its color will never change. Cao describes a 40-million-year-old beetle fossil that her lab examined recently, and which had color-producing nanostructures. "With my eyes I can still see the color," she said. "It really lasts for a very long time."

Explore further: Researchers design plasmonic cavity-free nanolaser

More information: Presentation FWW1, "Bio-inspired photonic nanostructures and lasers," by Hui Cao is at 4 p.m. on Wednesday, Oct. 19. http://www.frontiersinoptics.com/

Related Stories

New lasing technique inspired by brightly colored birds

May 09, 2011

(PhysOrg.com) -- Researchers at Yale University have succeeded in building a new kind of laser based on the way brightly colored birds show their colors. Building on the new approach to creating laser beams, ...

Birds' eye view is far more colorful than our own

Jun 23, 2011

The brilliant colors of birds have inspired poets and nature lovers, but researchers at Yale University and the University of Cambridge say these existing hues represent only a fraction of what birds are capable ...

'Squeezing' light into quantum dots

Apr 01, 2009

(PhysOrg.com) -- “Quantum wells have been instrumental in telecommunications, enabling light amplification,” Patanjali Kambhampati tells PhysOrg.com, “but theory has suggested that a very small - colloidal - quantu ...

Quantum leap for phonon lasers

Feb 22, 2010

Physicists have taken major step forward in the development of practical phonon lasers, which emit sound in much the same way that optical lasers emit light. The development should lead to new, high-resolution ...

Recommended for you

Researchers design plasmonic cavity-free nanolaser

59 minutes ago

(Phys.org) —A team of researchers at Imperial College in London has designed a new type of laser, one that could be made much smaller than today's models because it would be cavity-free. In their paper ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Eoprime
not rated yet Oct 13, 2011
The third time...