Bacteria forge nitrogen from nitric oxide: Scientists unravel key pathway in the nitrogen cycle

Oct 05, 2011

The anaerobic oxidation of ammonia (anammox) is an important pathway in the nitrogen cycle that was only discovered in the 1980s. Currently, scientists estimate that about 50 percent of the nitrogen in the atmosphere is forged by this process. A group of specialized bacteria perform the anammox reaction, but so far scientists have been in the dark about how these bacteria could convert ammonia to nitrogen in the complete absence of oxygen. Now, 25 years after its discovery, they finally solved the molecular mechanism of anammox.

Anammox bacteria are very unusual because they contain an organelle which is a typical eukaryotic feature. Inside this organelle, known as the "anammoxosome", the bacteria perform the anammox reaction. The membrane of the anammoxosome presumably protects the cells from highly reactive intermediates of the anammox reaction. These intermediates could be hydrazine and hydroxylamine, as microbiologists proposed many years ago. This was very exciting news because the turnover of hydrazine, a very powerful reductant also used as rocket fuel, had never been shown in biology. However, these early experiments were provisional and many open questions remained.

To finally unravel the pathway experimentally was a very difficult enterprise. Marc Strous from the Max Planck Institute in Bremen says: "The anammox organisms are difficult to cultivate because they divide only once every two weeks. Therefore we had to develop cultivation approaches suitable for such low growth rates. Even after 20 years of trials, we can still only grow the organisms in bioreactors and not in pure culture." In the present study, the researchers make use of the latest innovation in bioreactor technology for anammox cultivation: the membrane bioreactor. In such bioreactors the anammox organisms grow as suspended cells rather than in biofilms on surfaces, and relatively few contaminating organisms are present. The study makes use of protein purification and proteins cannot be effectively purified from biofilms because of the large amount of slime associated with these .

Another important key to the metabolism was the availability of the genome sequence of one of the best known anammox , Kuenenia stuttgartiensis. With the knowledge of the genome, the authors knew which proteins could be important. Based on the genome sequence, they could predict that , not hydroxylamine, might be the precursor for hydrazine. With a set of state-of-the art molecular methods the scientists could thus completely unravel the anammox pathway, and unequivocally establish the role of hydrazine and nitric oxide (NO) as intermediates.

"With this significant advance we can finally understand how the nitrogen in the air we breathe is created: from and nitric oxide!" concludes Marc Strous. With the establishment of the prominent role of nitric oxide in both anammox and denitrification, the research also opens a new window on the evolution of the biological in the Earth's distant past. Marc Strous explains: "In the early days in Earth's history, the nitric oxide accumulated in the atmosphere by vulcanic activity, was presumably the first "deep electron sink" on earth and may so have enabled the evolution of both microbial metabolic pathways anammox and denitrification."

Explore further: Top Japan lab dismisses ground-breaking stem cell study

More information: Molecular mechanism of anaerobic ammonium oxidation. B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. M. Op den Camp, H. R. Harhangi, E. M. Janssen-Megens, K.-J. Francoijs, H. G. Stunnenberg, J. T. Keltjens, M. S. M. Jetten, and M. Strous. Nature, Oct. 4 2011, doi:10.1038/nature10453

Related Stories

Pee power: Urine-loving bug churns out space fuel

Oct 02, 2011

Scientists on Sunday said they had gained insights into a remarkable bacterium that lives without oxygen and transforms ammonium, the ingredient of urine, into hydrazine, a rocket fuel.

New oxygen producing mechanism proposed

Mar 25, 2010

(PhysOrg.com) -- Photosynthesis is the mechanism by which plants generate oxygen, but new research on a novel type of anaerobic bacteria supports the theory that bacteria produced their own oxygen long before ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

22 hours ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.