Multi-compartment globular structures assembled from polymer-based materials may soon serve as cell prototypes

Sep 29, 2011 By Lee Swee Heng

The cell is a host of many complex reaction pathways. These pathways usually do not interfere with each other because they are contained within membrane-bound compartments, known as organelles. The lipid membrane is extremely selective—only allowing certain signalling molecules to permeate through—and plays an important role in biological processes, such as protein synthesis and the regulation of enzymatic reactions. Madhavan Nallani from the A*STAR Institute of Materials Research and Engineering and co-workers have now synthesized a new type of multi-compartment structure known as a polymersome, which mimics cellular compartmentalization through the use of self-assembling polymers.

Although many researchers have created artificial structures designed to imitate , their efforts have primarily been restricted to lipid and polymer-based structures with only one compartment. Nallani and his team designed a system consisting of two compartments self-assembled sequentially. “Most importantly, the membranes of different compartments are made from different materials,” Nallani says. As a consequence of this unique feature, the properties of the membranes can be tuned.

To make the polymersomes, the team opted for amphiphilic block copolymers—polymers composed of subunits with opposite affinity to water. Nallani explains that this difference in wettability is what drives the copolymers to self-organise into compartments. “One of the challenges that we encountered is the selection of materials to form such architectures,” he adds.

The researchers first synthesized single-compartment particles using one copolymer. They then entrapped each of these first structures in a second shell by adding a solution containing another type of copolymer. In the resulting multi-compartmentalized architectures, the inner particle consisted of a tightly packed, low-permeability membrane and was surrounded by a semi-permeable outer membrane that lets small molecules through.

Nallani and his team tested the selectivity of the compartment membranes for the encapsulation of biomolecules. As a proof of concept, they encased one kind of fluorescent protein that emits green light and another variety that displays red-light emission in the polymersomes. The inner part of the particles emitted green light while the outer compartment emitted red light (see image). The result suggests that the proteins were localized in two separate sections according to their type.

“Our system may add value in applications such as drug delivery and multi-enzyme biosynthesis,” says Nallani. The researchers are currently designing compartments that allow different components to mix just before reaching target cells. They are also introducing membrane proteins within these compartments that may facilitate the transport of products formed in one compartment to another.

Explore further: Researchers develop novel method for making electrical cellulose fibers

More information: Fu, Z., et al. Multicompartmentalized polymersomes for selective encapsulation of biomacromolecules. Chemical Communications 47, 2862–2864 (2011).

Provided by Agency for Science, Technology and Research (A*STAR)

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Scientists create cell assembly line

Mar 03, 2011

Borrowing a page from modern manufacturing, scientists from the Florida campus of The Scripps Research Institute have built a microscopic assembly line that mass produces synthetic cell-like compartments.

Membrane-coat proteins: Bacteria have them too

Jan 20, 2010

Although they are present almost everywhere, on land and sea, a group of related bacteria in the superphylum Planctomycetes-Verrucomicrobia-Chlamydiae, or PVC, have remained in relative obscurity ever since ...

Instruction Manual for Creating a Molecular Nose

Feb 12, 2007

An artificial nose could be a real benefit at times: this kind of biosensor could sniff out poisons, explosives or drugs, for instance. Researchers at the Max Planck Institute for Polymer Research and the Max ...

Recommended for you

The origins of handedness in life

7 hours ago

Handedness is a complicated business. To simply say life is left-handed doesn't even begin to capture the blooming hierarchy of binary refinements it continues to evolve. Over the years there have been numerous ...

Have our bodies held the key to new antibiotics all along?

10 hours ago

As the threat of antibiotic resistance grows, scientists are turning to the human body and the trillion or so bacteria that have colonized us—collectively called our microbiota—for new clues to fighting microbial infections. ...

Characterizing an important reactive intermediate

15 hours ago

An international group of researchers led by Dr. Warren E. Piers (University of Calgary) and Dr. Heikki M. Tuononen (University of Jyväskylä) has been able to isolate and characterize an important chemical ...

Surfaces that communicate in bio-chemical Braille

15 hours ago

A Braille-like method that enables medical implants to communicate with a patient's cells could help reduce biomedical and prosthetic device failure rates, according to University of Sydney researchers.

User comments : 0