New technique scales up nanofiber production

Aug 10, 2011 By Tracey Peake

(PhysOrg.com) -- A new spin on an old technology will give scientists and manufacturers the ability to significantly increase their production of nanofibers, according to researchers at North Carolina State University.

Collections of , because they are porous and lightweight, are useful in applications ranging from to to . But although nanofibers are relatively inexpensive to produce, the current method of production – needle electrospinning – is time-intensive.

In electrospinning, a liquid-polymer solution is passed through a hypodermic needle held at high voltage. The needle transfers electric charge, which transforms the solution into a jet of charged liquid that “spins” into a nanofiber as it exits the needle. Unfortunately, this method of production does not lend itself to large-scale manufacturing processes.

NC State physicists Laura Clarke and Jason Bochinski, textile engineer Russell Gorga and graduate student Nagarajan Thoppey found a particularly simple technique that scales up nanofiber production and provides a close connection to the needle electrospinning method. In a study recently published in the journal Nanotechnology, they demonstrated “bowl electrospinning.” In place of a hypodermic , the researchers filled a bowl with the polymer fluid and applied a short burst of very high voltage to the liquid’s surface, which caused multiple jets to form and “spin” nanofibers onto a collector placed around the outside of the bowl.

According to Bochinski, the experiment gave them a 40-fold increase in nanofiber production, and demonstrated the potential for further increases. It also led to one question that they hope to answer in the near future:

“One of our next steps will be studying the limitations of the bowl apparatus we used – for instance, why was the increase only 40-fold and not 40,000-fold – and how that relates to the geometry of the arrangement and the fluid’s properties,” Bochinski says.

Explore further: Study shows graphene able to withstand a speeding bullet

More information: “Edge electrospinning for high throughput production of quality nanofibers,” Authors: N M Thoppey, et al., North Carolina State University, Published: July 29, 2011, in Nanotechnology.

Abstract
A novel, simple geometry for high throughput electrospinning from a bowl edge is presented that utilizes a vessel filled with a polymer solution and a concentric cylindrical collector. Successful fiber formation is presented for two different polymer systems with differing solution viscosity and solvent volatility. The process of jet initiation, resultant fiber morphology and fiber production rate are discussed for this unconfined feed approach. Under high voltage initiation, the jets spontaneously form directly on the fluid surface and rearrange along the circumference of the bowl to provide approximately equal spacing between spinning sites. Nanofibers currently produced from bowl electrospinning are identical in quality to those fabricated by traditional needle electrospinning (TNE) with a demonstrated ~40 times increase in the production rate for a single batch of solution due primarily to the presence of many simultaneous jets. In the bowl electrospinning geometry, the electric field pattern and subsequent effective feed rate are very similar to those parameters found under optimized TNE experiments. Consequently, the electrospinning process per jet is directly analogous to that in TNE and thereby results in the same quality of nanofibers.

Related Stories

Spinning a new yarn: silicone fibers with living organisms

Nov 20, 2006

In a feat once as unlikely as the miller's daughter of fairytale fame spinning straw into gold, scientists in the United Kingdom have spun fine threads of biocompatible silicone that contain living human brain cells. The ...

Nonwoven, perfectly needled

Nov 02, 2010

Hardly any other textile is as versatile as nonwoven: it keeps babies’ bottoms dry and protects plants from the sun. In the Gulf of Mexico, special nonwovens soaked up the oil washed up on beaches like ...

Recommended for you

Study shows graphene able to withstand a speeding bullet

15 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

RedMechE
not rated yet Aug 16, 2011
I am more curious to see how the production rate and quality compares to the technique that the company Elmarco uses. Elmarco also uses an open container technique with an additional spinning mandrel within the polymer solution.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.