Scientist peers into cell division mechanics

Aug 04, 2011
Scientist peers into cell division mechanics
UW researcher Jay Gatlin prepares the machine that inserts microscopic probes into a cell spindle to measure the forces of the inward and outward pulls on microtubules, which act as structural elements like trusses and beams in a building. The probes are manipulated by joysticks. Credit: UW Photo

A researcher at the University of Wyoming is peeling away the mysteries enshrouding a cellular process occurring billions of times a day in a body, is absolutely precious to life and traces back through the murky eons of time to our origins - a living Xerox copier set on automatic.

It's cell division, studied by every high school biology student, but Jay Gatlin, an assistant professor in the Department of in the College of Agriculture and Natural Resources, and his laboratory team take such study exponentially higher.

For example, he measures the amount of force (measured in picoNewtons) exerted to pull toward opposite ends of the , the football-shaped form with two distinct poles that takes shape during cell division. One Newton roughly corresponds to the weight of a cup of tea. If a Newton is divided by 1 million, the result is a microNewton. If a microNewton is divided by 1 million, the result is 1 picoNewton.

Gatlin says is very much a mechanical process.

"This structure (spindle) is assembled by the cell, and its function is to physically pull duplicated chromosomes apart. The spindle has to pull apart chromosomes attached through linkages. During mitosis, all the chromosomes align and a checkpoint becomes inactivated and - Bam! - the cell divides," he says. "This movement requires the generation of force. We know very little about what sort of forces this thing is capable of generating. By understanding the forces, the dynamics, we can learn a lot about the structure itself, how it is assembled, how it works."

Gatlin wants to improve the resolution of measurements by developing new microscopy-based approaches.

"There are forces that want to bring the two poles together and forces that want to keep them apart," he says. "I'm interested in measuring the magnitude of the forces in hopes that, by understanding or characterizing these forces, we will begin to have a better understanding of spindle function in general, how it pulls the chromosomes apart and what it is capable of doing."

Explore further: Report on viruses looks beyond disease

Provided by University of Wyoming

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Scientists deconstruct cell division

Feb 08, 2009

The last step of the cell cycle is the brief but spectacularly dynamic and complicated mitosis phase, which leads to the duplication of one mother cell into two daughter cells. In mitosis, the chromosomes ...

A unique arrangement for egg cell division

Aug 09, 2007

Which genes are passed on from mother to child is decided very early on during the maturation of the egg cell in the ovary. In a cell division process that is unique to egg cells, half of the chromosomes are eliminated from ...

Researchers shed light on shrinking of chromosomes

Jun 11, 2007

A human cell contains an enormous 1.8 metres of DNA partitioned into 46 chromosomes. These have to be copied and distributed equally into two daughter cells at every division. Condensation, the shortening of chromosomes, ...

Slicing chromosomes leads to new insights into cell division

May 29, 2009

(PhysOrg.com) -- By using ultrafast laser pulses to slice off pieces of chromosomes and observe how the chromosomes behave, biomedical engineers at the University of Michigan have gained pivotal insights into mitosis, the ...

Recommended for you

Brand new technology detects probiotic organisms in food

8 hours ago

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

9 hours ago

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0