Man in the moon looking younger

Aug 17, 2011
Moon

Earth's Moon could be younger than previously thought, according to new research from a team that includes Carnegie's Richard Carlson and former-Carnegie fellow Maud Boyet. Their work will be published online in Nature on August 17.

The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth. The energy of this impact was sufficiently high that the Moon formed from melted material that was ejected into space. As the Moon cooled, this solidified into different mineral components.

Analysis of samples thought to have been derived from the original magma has given scientists a new estimate of the Moon's age.

According to this theory for lunar formation, a rock type called ferroan anorthosite, or FAN, is the oldest of the Moon's crustal rocks, but scientists have had difficulty dating FAN samples. The research team, led by Lars E. Borg of the Lawrence Livermore National Laboratory, included Carlson of Carnegie's Department of , Boyet-- now at Université Blaise Pascal--and James N. Connelly of the University of Copenhagen. They used newly refined techniques to determine the age of a sample of FAN from the lunar rock collection at the NASA Johnson Space Center.

The team analyzed the isotopes of the elements lead and neodymium to place the FAN sample's age at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range as old as the age of the solar system at 4.568 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals--zircons from western Australia--suggesting that the oldest crusts on both and Moon formed at approximately the same time, and that this time dates from shortly after the giant impact.

This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which the sample crystallized.

"The extraordinarily young age of this lunar sample either means that the solidified significantly later than previous estimates, or that we need to change our entire understanding of the Moon's geochemical history," Carlson said.

Explore further: NASA-NOAA Suomi NPP Satellite team ward off recent space debris threat

Provided by Carnegie Institution

3 /5 (2 votes)

Related Stories

'Big splat' may explain the moon's mountainous far side

Aug 03, 2011

The mountainous region on the far side of the moon, known as the lunar farside highlands, may be the solid remains of a collision with a smaller companion moon, according to a new study by planetary scientists at the University ...

Moon whets appetite for water

Jun 14, 2010

Scientists at the Carnegie Institution's Geophysical Laboratory, with colleagues, have discovered a much higher water content in the Moon's interior than previous studies. Their research suggests that the ...

Recommended for you

Beastly sunspot amazes, heightens eclipse excitement

6 minutes ago

That's one big, black blemish on the Sun today! Rarely have we been witness to such an enormous sunspot. Lifting the #14 welder's glass to my eyes this morning I about jumped back and bumped into the garage.

The formation and development of desert dunes on Titan

1 hour ago

Combining climate models and observations of the surface of Titan from the Cassini probe, a team from the AIM Astrophysics Laboratory (CNRS / CEA / Paris Diderot University) , in collaboration with researchers ...

'Eau de comet' is a bit of a stinker

1 hour ago

Rotten eggs, horse pee, alcohol and bitter almonds: this is the bouquet of odours you would smell if a comet in deep space could be brought back to Earth, European scientists said on Thursday.

User comments : 0