From mild-mannered to killer plague: New study explains plague's rapid evolution

Aug 29, 2011

In the evolutionary blink of an eye, a bacterium that causes mild stomach irritation evolved into a deadly assassin responsible for the most devastating pandemics in human history. How did the mild-mannered Yersinia pseudotuberculosis become Yersinia pestis, more commonly known as the Plague?

Now, scientists from Northwestern University Feinberg School of Medicine, with the use of new DNA sequencing techniques, offer long sought after evidence of how these two pathogens with virtually identical genetic matter could produce two such vastly different diseases. The Feinberg School team used the new DNA sequencing techniques to identify an unexpected source for these differences, which may help explain the Plague's rapid evolution.

The findings, to be published Aug. 29 in the journal , offer a glimpse into how the new technology might aid in the development of therapeutics to fight deadly diseases, including the Plague.

"Most people think of the Plague as a historic disease, but it's still a public health issue today, both in the human population and in animals," said Wyndham Lathem, lead author of the study and assistant professor of microbiology-immunology at Northwestern's Feinberg School. "It's extremely dangerous and highly virulent. Without treatment, it can take as little as three to five days from infection to death."

Globally, the World Health Organization reports 1,000 to 3,000 cases of every year, and Y. pestis exists on every continent except Antarctica. The United States Department of Homeland Security classifies Y. pestis as a Category A biological agent, a group that also includes anthrax, smallpox and Ebola.

The Plague's ancestor, Y. pseudotuberculosis, still exists and infects humans, but it causes a mild and most people don't show symptoms.

Lathem and colleagues have discovered the differences in between these two subspecies may have arisen from changes in small, non-coding RNAs (sRNAs), complex molecules involved in controlling many cellular processes.

The Northwestern team is the first to show that sRNAs in Yersinia affect virulence, a finding that suggests the evolution of pathogens may also occur at the level of changes in RNA and in the way protein-coding genes are regulated.

Lathem used advanced DNA sequencing technology — called high-throughput sequencing — to identify the complete set of sRNAs produced by Y. pseudotuberculosis. The technology enabled his team to study the diseases for the first time at a deeper genetic level.

"This technique enables us to really pick apart how pathogens evolve and how different species of bacteria are able to cause different types of disease," Lathem said. "It goes beyond looking at what proteins are produced by the bacteria. It's an additional layer of evolutionary analysis."

This detective work is important because if researchers can identify unique characteristics among deadly species such as Y. pestis, they may be able to generate new therapeutics or adapt current ones.

Unlike traditional "messenger" RNA, which is copied from DNA to create proteins and is well understood by scientists, these non-coding sRNA molecules are never translated into proteins. Hundreds of noncoding RNA molecules exist inside bacterial cells, but, until recently, scientists had not determined the function of many.

"Once we identified the complete set of sRNAs for Y. pseudotuberculosis, further analysis unlocked a number of surprising discoveries about their function," Lathem said.

Among these surprising discoveries, Lathem's team identified 150 sRNAs, a majority of which are specific to the Yersinia species, and six sRNAs unique to Y. pseudotuberculosis. Those six sRNAs are missing in Y. pestis, likely lost during its (somewhere between 1,500 and 20,000 years ago), and thereby potentially responsible for the Plague's virulence. Lathem's team developed this explanation because they could specify exactly which genes the sRNAs control.

First author Jovanka Koo, a postdoctoral fellow in Lathem's lab at Feinberg, noted, "An important lesson is that small changes can have big effects on sRNA functions. They can affect when an RNA is expressed or produced, the way that RNA folds, and the ability of that RNA to affect the regulated protein coding RNA." Over time, those small changes can become the difference between mild and .

Explore further: Team publishes evidence for natural alternative to antibiotic use in livestock

Related Stories

Gene regulation: Can we stomach it?

Feb 23, 2010

(PhysOrg.com) -- A breakthrough in decoding gene regulation of Helicobacter pylori has been made by an international research team led by Jörg Vogel of the Max Planck Institute for Infection Biology in Ber ...

Researchers Uncover a Secret of the Black Death

Sep 18, 2006

Yersinia pestis, the bacteria that causes plague, is a sneaky little intruder with a remarkable ability to evade the body’s immune system. Upon entering an organism, Y. pestis employs a variety of strategies to slip below ...

Mimic molecules to protect against plague

Jul 04, 2008

Bacteria that cause pneumonic plague can evade our first-line defences, making it difficult for the body to fight infection. In fact, a signature of the plague is the lack of an inflammatory response. Now, scientists have ...

How plague-causing bacteria disarm host defense

May 24, 2007

Effector proteins are the bad guys that help bacterial pathogens do their job of infecting the host by crippling the body's immune system. In essence, they knock down the front door of resistance and disarm the cell's alarm ...

Human cells can copy not only DNA, but also RNA

Aug 10, 2010

Single-molecule sequencing technology has detected and quantified novel small RNAs in human cells that represent entirely new classes of the gene-translating molecules, confirming a long-held but unproven hypothesis that ...

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Osiris1
1 / 5 (9) Aug 29, 2011
Makes one wonder whether some not so advanced visitor from another world thought it could 'terraform' us out of existance using Y. Pestis as a 'broom'. Hey Betty and Barney Hill told us that the aliens that kidnapped them for exobiologic study knew about laparoscopy for pregnancy detection but did not know of either the non-intrusive ultrasound scan nor the new chemical means available in drugstores over the counter today. Betty and Barney Hill did not know of laparoscopy either because in the early sixties it had yet to be invented. It was only a few years later that we found out about it.....maybe because the Hill's testimony to 'Blue Book' interrogators was released to Col Corso's study groups and the rest is history. Hey, wherever knowledge comes from! Point is we should look to historic interference in our society by off world groups as a logical possibility. Even Steven Hawking talks of aliens as logical possibilities. If we are gone, it's anybody's world!!!
bugmenot23
not rated yet Aug 30, 2011
wow ur rite da alianz r makin plaig
Hev
not rated yet Aug 30, 2011
Plague brought an end to the Roman Empire. It remained endemic in rodents like susliks etc. in Siberia (and still is) but thanks to the trade-routes opened up by the Mongol Empire spread to kill one third of Europe's population. It is interesting that it can have lurked as a harmless tummy bug so how did it take off into such a devastating epidemic disease in humans. As pointed out - it is still around.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.