Researchers create first 3D invisibility cloak

Aug 11, 2011 by Bob Yirka report
Photographs of: (top) the assembled cloak on the test cylinder with end caps; (bottom left) a cross-section view of the assembly with end cap removed; (bottom right) a shell segment edge with copper tape used to form the metallic strip for the metamaterial cloak. Image from arXiv:1107.3740v1

(PhysOrg.com) -- Science has taken one more step towards creating a true real-life cloaking device. Assistant Professor Andrea Alůin and his colleagues at the University of Texas at Austin have successfully created a cloaking device capable of "hiding" a 3D object in free space from microwaves. The team describes how they used a "plasmonic" shell to hide a cigar shaped object from one microwave polarization in their pre-printed paper on arXiv.

Cloaking devices are based on so-called metamaterials and follow up on the pioneering efforts of David Smith and his team at Duke University in North Carolina, who in 2006 first discovered it was possible through the use of metamaterials, to deflect microwave radiation around an object, thus rendering it, virtually invisible. Subsequent work by other research teams have led to 2D or 3D carpet cloaking devices that are able to cloak an object pressed against a plane. With this new research, Alůin and his team claim to have created a cloaking device able to hide an object in free space.

To create the device, the team used a plasmonic shell to cover the object being cloaked. Plasmonic materials (normally used when making solar cells) are able to bend electromagnetic radiation in unique ways, and in this case, cancel the light scattered by the object. The shell works because it is has a polarization opposite to the scattered light and thus cancels it out, effectively cloaking the object hidden within. The object in this case was a hollow dielectric (an electrical insulator that can be polarized) cylinder. The shell was comprised of the same material though it was constructed from segments separated by precision cut copper tape and held together by end-caps. The resultant cloaking device was able to suppress scattering all around the object and from more than one angle.

In the paper Alůin suggests that he knows of a way to create a similar that would work with un-polarized light, which would allow more than just one frequency of microwaves to be used, but in this case went with just one for simplicity’s sake. He also says simulations show that the same technique should work for other bandwidths, presumably infrared and optical wavelengths.

Explore further: Physicists consider implications of recent revelations about the universe's first light

More information: Experimental 3D Plasmonic Cloaking in Free Space, David Rainwater, Aaron Kerkhoff, Kevin Melin, Andrea Alu, arXiv:1107.3740v1 [cond-mat.mtrl-sci] arxiv.org/abs/1107.3740

Abstract
We report the first experimental verification of a metamaterial cloak for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite dielectric cylinder. We verify that scattering suppression is obtained all around the object and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our experiment confirms that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects at microwave frequencies.

via PhysicsWorld

Related Stories

Next generation cloaking device demonstrated

Jan 15, 2009

A device that can bestow invisibility to an object by "cloaking" it from visual light is closer to reality. After being the first to demonstrate the feasibility of such a device by constructing a prototype ...

New invisibility cloak hides objects from human view

Jul 27, 2011

For the first time, scientists have devised an invisibility cloak material that hides objects from detection using light that is visible to humans. The new device is a leap forward in cloaking materials, according to a report ...

Researchers create “antimagnet” cloaking device

Aug 05, 2011

In what seems like one new cloaking device being discovered after another, researchers in Spain have modeled a device that they say can prevent magnetism from leaking out of a containment container and also prevent it from ...

Recommended for you

Grasp of SQUIDs dynamics facilitates eavesdropping

21 hours ago

Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure ...

UK's lead in physics healthy but insecure

23 hours ago

The quantity and quality of scientific papers produced by UK physicists indicates that the UK remains in an elite group of nations contributing at the leading edge of physics research.

Atom probe assisted dating of oldest piece of earth

Apr 21, 2014

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

User comments : 0

More news stories

UK's lead in physics healthy but insecure

The quantity and quality of scientific papers produced by UK physicists indicates that the UK remains in an elite group of nations contributing at the leading edge of physics research.

Grasp of SQUIDs dynamics facilitates eavesdropping

Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure ...

Robot scouts rooms people can't enter

(Phys.org) —Firefighters, police officers and military personnel are often required to enter rooms with little information about what dangers might lie behind the door. A group of engineering students at ...

In the 'slime jungle' height matters

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...