Computer simulations aid understanding of bacterial resistance against commonly used antibiotics

Jul 21, 2011

A recent study into the interactions between aminoglycoside antibiotics and their target site in bacteria used computer simulations to elucidate this mechanism and thereby suggest drug modifications.

In the article, which will be published on July 21st in the open-access journal , researchers from University of Warsaw, Poland, and University of California San Diego, USA, describe their study of the physical basis of one mechanism - mutations of the antibiotic target site, namely RNA of the bacterial ribosome. They performed simulations and observed changes in the interaction between the antibiotic and the target site when different mutations were introduced.

In hospitals throughout the world, aminoglycosidic antibiotics are used to combat even the most severe bacterial infections, being very successful especially against tuberculosis and plague. However, the continuous emergence of resistant bacteria has created an urgent need to improve these antibiotics. Previous experiments on bacteria have shown that specific point mutations in the bacterial confer high resistance against aminoglycosides. However, the physico-chemical mechanism underlying this effect has not been known. Using computer simulations the researchers explained how various mutations in this specific RNA fragment influence its dynamics and lead to resistance.

Bacteria have developed other ways of gaining resistance, not just through mutations, and further studies are underway. The authors are now investigating the resistance mechanism by which actively modify and neutralize aminoglycosidic antibiotics. These molecular modeling studies together with experiments could help to design even better aminoglycoside derivatives in the future.

Explore further: Environmental pollutants make worms susceptible to cold

More information: Romanowska J, McCammon JA, Trylska J (2011) Understanding the Origins of Bacterial Resistance to Aminoglycosides through Molecular Dynamics Mutational Study of the Ribosomal A-Site. PLoS Comput Biol 7(7): e1002099. doi:10.1371/journal.pcbi.1002099

add to favorites email to friend print save as pdf

Related Stories

The structure of resistance

Feb 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Interactions of Earth's smallest players have global impact

Sep 19, 2014

A new study reveals the interactions among bacteria and viruses that prey on them thriving in oxygen minimum zones—stretches of ocean starved for oxygen that occur around the globe. Understanding such microbial ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0