Polymer scientist is laying groundwork for next-generation flexible photovoltaics

July 12, 2011

University of Massachusetts Amherst polymer scientist Ryan Hayward recently received a five-year, $750,000 grant from the U.S. Department of Energy to improve understanding of the fundamentals for the next generation of lightweight and flexible electricity-conducting polymers. They are in limited use now in thin solar panels on messenger bags that can recharge a cell phone battery, for example.

Hayward and colleagues will study the physics of how crystallize and how they can be used to build solar-power-collecting with the optimal combination of p-type/n-type (P-N) junctions for efficient light harvesting. This is expected to lead to a new crop of more cost-effective that are more efficient at conducting electrons than current technology.

When sunlight hits a , electrons become excited and move to P-N junctions, then out of the device as electric power. One problem at present is that the motion of charges through polymer-based often is slowed to a crawl, a flow rate more like the stop-and-go of local traffic than a smooth expressway. One goal of Hayward and colleagues’ new research will be figuring out how to allow electrons to flow faster, enhancing the efficiency and cost effectiveness of charge transport in photovoltaics.

"As electronic materials, polymers have promise in terms of low cost and ease of processing," he says. "These materials are light and flexible, so they can be dissolved into a solution and sprayed onto a surface. There are now small available that are so flexible you can role them up like a map." But such applications are still rather expensive and not as efficient as they could be at producing electric power.

The UMass Amherst research group will conduct basic experiments to understand mechanisms involved in controlling structure and improving conjugated polymer performance. They will study self assembly of these materials across multiple length scales and develop new methods for preparing P-N junctions capable of efficient charge transport.

"For polymer-based electronics it’s important to understand the structure of P-N junctions both on the length-scale of 10 nanometers, which is important for harvesting light, and on the scale of Angstroms, which is important for charge transport. We’ll be trying to assemble new materials where we can control both the crystalline or molecular scale ordering and the nanoscale organization," Hayward points out.

As experts in polymer self-assembly, Hayward and colleagues will work with fellow UMass Amherst polymer scientist Todd Emrick and his research group, who synthesize a number of semi-conducting polymer materials.

"These are really interesting problems in fundamental science," Hayward notes. "We anticipate that the lessons we learn will be useful for many other areas in addition to photovoltaics, such as for polymer-based LEDs and transistors and other types of polymer-based electronics."

Explore further: SSRL Aids Development of Plastic Electronics

Related Stories

SSRL Aids Development of Plastic Electronics

May 4, 2006

For close to a decade, researchers have been trying to improve the performance of plastic semiconductors to the level of amorphous silicon—the semiconductor used in low-cost electronics such as photovoltaic cells for solar ...

Looking deeply into polymer solar cells

September 13, 2009

Researchers from the Eindhoven University of Technology and the University of Ulm have made the first high-resolution 3D images of the inside of a polymer solar cell. This gives them important new insights in the nanoscale ...

Chemists Identify New Way to Create Photovoltaic Devices

April 1, 2010

(PhysOrg.com) -- A promising new polymer-based method for creating photovoltaic devices, which convert sunlight into electricity, has been identified by chemists at the University of Massachusetts Amherst. Their new technique ...

Researchers at UA developing next-gen conductive polymers

December 23, 2010

(PhysOrg.com) -- Conductive polymers, while not quite wonder materials, have the potential for being so and University of Akron polymer scientists and polymer engineers are focused on developing the next generation of the ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.