A hot species for cool structures: Complex proteins in 3-D thanks to simple heat-loving fungus

Jul 21, 2011

A fungus that lives at extremely high temperatures could help understand structures within our own cells. Scientists at the European Molecular Biology Laboratory (EMBL) and Heidelberg University, both in Heidelberg, Germany, were the first to sequence and analyse the genome of a heat-loving fungus, and used that information to determine the long sought 3-dimensional structure of the inner ring of the nuclear pore. The study was published today in Cell.

The Chaetomium thermophilum lives in soil, dung and compost heaps, at temperatures up to 60 C. This means its proteins – including some which are very similar to our own – have to be very stable, and the Heidelberg scientists saw this stability as an advantage.

"There are a number of structures that we couldn't study before, because they are too unstable in organisms that live at more moderate temperatures," explains Peer Bork, who led the analysis at EMBL. "Now with this heat-loving fungus, we can."

The scientists compared the fungus' genome and proteome to those of other eukaryotes – organisms whose cells have a nucleus – and identified the proteins that make up the innermost ring of the , a channel that controls what enters and exits a cell's nucleus. Having identified the relevant building blocks, the scientists determined the complex 3D structure of that inner ring for the first time.

"This work shows the power of interdisciplinary collaborations," says Ed Hurt, who led the structural and biochemical analyses at Heidelberg University: "the nuclear pore is an intricate biological puzzle, but by combining bioinformatics with biochemistry and structural biology, we were able to solve this piece of it for the first time."

The scientists have made C. thermophilum's genome and proteome publicly available, and are confident that these will prove valuable for studying other eukaryotic structures and their interactions, as well as general adaptations to life in hot places. Such knowledge could potentially lead to new biotechnology applications.

Explore further: Fighting bacteria—with viruses

More information: Published online in Cell on 22 July 2011.

add to favorites email to friend print save as pdf

Related Stories

Membrane-coat proteins: Bacteria have them too

Jan 20, 2010

Although they are present almost everywhere, on land and sea, a group of related bacteria in the superphylum Planctomycetes-Verrucomicrobia-Chlamydiae, or PVC, have remained in relative obscurity ever since ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0