UIC engineer tests improved 'icephobic' coatings

Jun 02, 2011

(PhysOrg.com) -- While scientists and engineers have developed several products that repel water and, to a lesser degree, snow and ice, considerable room remains for something "new and improved."

University of Illinois at Chicago mechanical and professor Constantine Megaridis hopes that he and his Micro/Nanoscale Fluid Transport Laboratory team at UIC will find new ways to meet this goal.

Megaridis received a $320,000 National Science Foundation grant to investigate what is called "icophobic behavior" by select surfaces. He uses coatings with tunable properties such as controlled micro-to-nanoscale texture that display the ability to repel -- a property called superhydrophobicity -- or the ability to self-clean.

Megaridis's recent research to develop coatings that are both superhydrophobic and self-cleaning has yielded promising results. He now wants to begin research to see if such coatings can be improved, adding the "icephobic" quality and testing that both shed water and .

"The main idea is to be able to provide a skin that's both phobic and electrically conducting -- the latter meaning you can heat it up," he said. "Imagine you have a chunk of ice anchored in a rough, cold surface. Trying to remove it is challenging because the ice is stuck. But if you add heat locally and melt the contact area between the ice and the surface skin, you create a thin lubricating layer for the ice to slip off."

Megaridis's lab work will focus on characterizing various surface coatings to better understand how to make these surfaces improve water beading and roll-off. The shape of the water bead and inclination of a surface for water to roll off are two key properties characterizing surface phobicity, or surface energy -- which defines the affinity between a solid and liquid.

", for example has very low energy. Water won't stick to it," Megaridis said. "Water sticks on metal preventing roll-off. Metals have high ."

Megaridis and his laboratory team hope to learn how to make more durable, ice-repelling coatings for critical and high-value applications, such as energy-generating wind turbine blades.

"When ice deposits on turbine blades, it can rob a big portion of the turbine's output," he said. "Aircraft wing icing is another long-term problem we'd like to work on."

Megaridis says his laboratory has the right tools to study the problem. "We're trying to push science so that products get better in this area," he said. "We want to produce something that has value for the real world."

Part of the NSF grant will support science teachers at Chicago's Benito Juarez Community Academy, a high school in the city's Pilsen neighborhood near the UIC campus. Select students who hope to successfully compete in upcoming science fairs will be given the opportunity to work with UIC students in Megaridis's lab to learn more about scientific career opportunities and the discipline it takes to become a scientist.

"We hope to get these young students excited," he said. "We'll show them how research is being done. We'll also offer access to first-rate scientific research equipment."

Explore further: Mirror-image forms of corannulene molecules could lead to exciting new possibilities in nanotechnology

add to favorites email to friend print save as pdf

Related Stories

Getting ice, frost off planes problematic

Dec 22, 2010

The buildup of ice on surfaces can cause problems in many situations: On airplane wings or on their engine turbine blades, ice can both add weight and interfere with a wing’s lift, which can make it impossible ...

New Oxford spin-out to transform surfaces

Sep 07, 2006

The latest spin-out company from the University of Oxford, Oxford Advanced Surfaces Ltd, plans to apply surface science to develop a revolutionary coating for materials like plastics and Teflon.

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 0