Learning more about phase transitions in small systems

Jun 23, 2011 By Miranda Marquit feature

(PhysOrg.com) -- "People want to understand phase transitions in a finite system by quantum simulation," Luming Duan tells PhysOrg.com. Duan is a professor at the University of Michigan, located in Ann Arbor. "Being able to see a sharp phase transition in a small finite system is unusual and would help us better understand the strength and limitation of quantum simulation. Quantum simulation is a useful tool to study the properties of new materials." So far, it has been difficult to observe sharp phase transitions in such small systems Duan, though, believes that it is possible to create a way to observe sharp transitions in small quantum systems associated with the trapped ion experiments.

Duan, along with G.-D. Lin, also at the University of Michigan, and C. Monroe, at the University of Maryland in College Park, has been working on a way to observe a sharp phase transition with just a few atomic spins. Their work is published in : “Sharp in a Small Frustrated Network of Trapped Ion Spins.”

“Usually we only see sharp phase transitions in large systems,” Duan says. “In large systems, we see the sharp transition, such as from water to vapor, or water to ice.” However, in small systems it is harder to see such sharp transitions. Duan and his colleagues made a theoretical prediction about how it should be possible to observe sharp phase transitions with a small system of only a few atomic ions having long-range interaction with each other.

Understanding phase transitions in a finite system is important, according to Duan. “We use quantum simulations from a finite system to try to understand new material in the bulk limit,” he points out. “The results can help us learn more about how the phenomenon in a small finite system simulates the physics in the many-body limit.”

In order to observe these phase transitions, Duan suggests that frustrated spins can be useful. “The unusual finite-size scaling laws in a frustrated spin network can be helpful in seeing phase transitions,” he says. An experiment meant to help scientists to see a sharp phase transition could be set up by controlling the parameter that determines spin. As the spin network becomes frustrated, a variety of spin orders would emerge, and certain couplings would allow for the expected sharp transitions between different types of ground states.

Right now, Duan believes that the technology exists to conduct an experiment to prove the theoretical prediction of an observable sharp phase transition in a small quantum system. “One major requirement to detect sharp phase transitions is the timescale of experiments,” Duan says. “You need a pretty long coherence time for this type of experiment.” However, Duan says that some experimental group can already meet the requirements.

“We need to understand the phase transition in a finite system,” Duan insists. “Phase transitions in a controllable finite would allow us to find similar characteristics between different materials, and provide a way to look at new quantum materials.”

The use of frustrated spin networks in small systems to see sharp phase transitions might also be useful in understanding the importance of finite-size scaling. “We need to understand how the properties of a system changes as the system size varies,” Duan says. “If you can see sharp phase transitions in a smaller system, as well as a large system, this offers a significant implication for application of quantum simulation in the future.”

Explore further: New research signals big future for quantum radar

More information: G.-D. Lin, C. Monroe, and L.-M. Duan, “Sharp Phase Transitions in a Small Frustrated Network of Trapped Ion Spins,” Physical Review Letters (2011). Available online: link.aps.org/doi/10.1103/PhysRevLett.106.230402

5 /5 (3 votes)

Related Stories

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

New robotic telescope revolutionizes the study of stars

Oct 22, 2014

In the last 8 months a fully robotic telescope in Tenerife has been carrying out high-precision observations of the motion of stellar surfaces. The telescope is the first in the SONG telescope network and ...

Recommended for you

New filter could advance terahertz data transmission

6 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

7 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

8 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

9 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

21 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hush1
not rated yet Jun 23, 2011
Yes. Spin in networks is frustrating.
Like water's volume at 39 degrees Celsius.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.