Filtering out pesticides with E. coli

April 14, 2011

Genetically modified bacteria could be used in air filters to extract pesticide vapors from polluted air thanks to work by researchers in China published this month in the International Journal of Environment and Pollution.

The bacteria Escherichia coli is perhaps best known as a that can cause food poisoning and in one form, the O157:H7, can damage the kidneys and even be lethal. However, , is commonly used in biological research as a model organism for a wide range of beneficial experiments. Now, researchers in China have discovered that a genetically modified form of the bacteria can be used in a biofilter to extract the toxic pesticides, parathion and methyl parathion from the air.

Junxin Liu of the Chinese Academy of Sciences in Beijing, and colleagues have demonstrated average removal efficiencies of 95.2% for parathion and 98.6% for methyl parathion using a biofilter based on the engineered bacteria E. coli BL21. Optimization of the system might allow up to 100% removal. The team explains that compared to conventional biofilters, their system was far more effective, especially in the initial stages of filtering. The pesticides are broken down to p-nitrophenol as well as nitrate and sulfate byproducts. These byproducts are then quickly "mineralized" by other naturally occurring microbes present in the biofilter.

Organophosphorus pesticides, including parathion and methyl parathion, are highly effective agrochemicals amounting to more than a third of protection worldwide. Unfortunately, they can accumulate in the environment and pose a risk to human health under some conditions. Bioremediation of water and soil using that can break down these compounds is being developed. However, Liu and colleagues have focused on air purification using biofilters.

Explore further: Charcoal biofilter cleans up fertilizer waste gases

More information: "Simultaneous removal of parathion and methyl parathion by genetically engineered Escherichia coli in a biofilter treating polluted air" in Int. J. Environ. Pollut., 2011, 45, 3-14

Related Stories

Charcoal biofilter cleans up fertilizer waste gases

October 14, 2010

Removing the toxic and odorous emissions of ammonia from the industrial production of fertilizer is a costly and energy-intensive process. Now, researchers in Bangladesh have turned to microbes and inexpensive wood charcoal ...

New Vaccines May Help Thwart E. coli O157:H7

December 18, 2009

(PhysOrg.com) -- Immunizing calves with either of two forms of a vaccine newly developed by Agricultural Research Service (ARS) scientists might reduce the spread of sometimes deadly Escherichia coli O157:H7 bacteria. The ...

Viruses can turn harmless E. coli dangerous

April 16, 2009

For her doctorate, Camilla Sekse studied how viral DNA can be transmitted from pathogenic to non-pathogenic E. coli. Viruses that infect bacteria in this way are called bacteriophages. Her findings reveal that such transmission ...

Adapting to change? Remember the good, forget the bad!

March 30, 2010

It's not easy being a bacterium and constantly having to adapt to whatever your environment throws at you. Dr Robert Endres explains how bacteria rely on their 'memories' to fine-tune their ability to sense food and danger, ...

Recommended for you

Atlas of the RNA universe takes shape

December 7, 2016

As the floor plan of the living world, DNA guides the composition of animals ranging from unicellular organisms to humans. DNA not only helps shepherd every organism from birth through death, it also plays an essential role ...

Gene "bookmarking" regulates the fate of stem cells

December 7, 2016

A protein that stays attached on chromosomes during cell division plays a critical role in determining the type of cell that stem cells can become. The discovery, made by EPFL scientists, has significant implications for ...

Some bats develop resistance to devastating fungal disease

December 6, 2016

Bat populations in some places in North America appear to have developed resistance to the deadly fungal disease known as white-nose syndrome. Researchers from UC Santa Cruz analyzed infection data and population trends of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.