A molecular motor design breakthrough

March 4, 2011

French researchers from CNRS and the Universite de Bordeaux, in collaboration with a Chinese team , have developed the first molecular piston capable of self-assembly. Their research represents a significant technological advance in the design of molecular motors. Such pistons could, for example, be used to manufacture artificial muscles or create polymers with controllable stiffness. The results are published on 4 March 2011 in the journal Science.

Living organisms make extensive use of molecular motors in fulfilling some of their vital functions, such as storing energy, enabling cell transport or even moving about in the case of . Since the molecular layouts of such motors are extremely complex, scientists seek to create their own, simpler versions. The motor developed by the international team headed by Ivan Huc , CNRS researcher in the “Chimie et Biologie des Membranes et des Nanoobjets” Unit, is a “molecular piston”. Like a real piston, it comprises a rod on which a moving part slides, except that the rod and the moving part are only several nanometers long.

More specifically, the rod is formed of a slender molecule, whereas the moving part is a helix-shaped molecule (both are derivatives of organic compounds especially synthesized for the purpose). How can the helicoidal molecule move along the rod? The acidity of the medium in which the is immersed controls the progress of the helix along the rod: by increasing the acidity, the helix is drawn towards one end of the rod, as it then has an affinity for that portion of the slender molecule. By reducing the acidity, the process is reversed and the helix goes in the other direction.

This device has a crucial advantage compared to existing molecular pistons: self-assembly. In previous versions, which take the form of a ring sliding along a rod, the moving part is mechanically passed onto the rod with extreme difficulty. Conversely, the new piston is self-constructing: the researchers designed the helicoidal molecule specifically so that it winds itself spontaneously around the rod, while retaining enough flexibility for its lateral movements.

By allowing the large scale manufacturing of such molecular pistons, this self-assembly capacity augurs well for the rapid development of applications in various disciplines: biophysics, electronics, chemistry, etc. By grafting several pistons together end-to-end, it could be possible, for example, to produce a simplified version of an artificial muscle, capable of contracting on demand. A surface bristling with molecular pistons could, as and when required, become an electrical conductor or insulator. Finally, a large-scale version of the rod on which several helices could slide would provide a of adjustable mechanical stiffness. This goes to show that the possibilities for this new molecular piston are (almost) infinite.

Explore further: Molecular capsule: helical ribbon with closed ends takes up guest molecules

More information: Helix-Rod Host-Guest, Complexes with Shuttling Rates Much Faster than Disassembly. Quan Gan, et al. Science. 4 March 2011.

Related Stories

Molecular motor structural changes imaged

September 14, 2006

A U.S.-led international team of researchers has shed new light on how tiny molecular motors that transport materials within cells generate energy.

Study measures single-molecule machines in action

July 6, 2010

(PhysOrg.com) -- In the development of future molecular devices, new display technologies, and "artificial muscles" in nanoelectromechanical devices, functional molecules are likely to play a primary role.

Single molecule motor inspired by natural energy conversion

January 23, 2006

A single molecule working as the nano scale version of the steam engine: that’s the molecular motor developed by a group of UT scientists led by prof. Julius Vancso of the MESA+ Institute for Nanotechnology. Natural ‘motor ...

Why is the helix such a popular shape?

February 18, 2005

Perhaps because they are nature's space savers Something about nature loves a helix, the ubiquitous spiral shape taken on by DNA and many other molecules found in the cells of living creatures. The shape is so useful that, ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 06, 2011
This piston maybe a part that we need for building the nanoblock in my design. See my page same as my name.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.