Advanced Light Source finds big surprise in Paleozoic scorpion fossil

Mar 01, 2011 by Dan Krotz
A big surprise is revealed in this soft x-ray absorption image of exoskeleton from a 310-million-year-old scorpion fossil. The brighter areas map the abundance of nitrogen from chitin, which scientists previously believed couldn't endure in extremely old fossils. For scale, the black bar is one-millionth of a meter. (Image courtesy of Carnegie Institution)

(PhysOrg.com) -- It’s not quite Jurassic Park, but who wants Paleozoic scorpions scurrying around anyway? Scientists used a powerful microscope at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) to detect remnants of protein and chitin in the exoskeleton of a 417-million-year-old fossil of an extinct mega-scorpion, a discovery that is several hundred million years older than previously thought possible.

The finding was made by a team of scientists led by George Cody of the Carnegie Institution of Washington. The research was conducted at the Advanced Light Source, a synchrotron located at Berkeley Lab.

Their work upends the conventional view that organic material, such as that found in the outer portion of exoskeleton, doesn’t endure in extremely old fossils because it’s readily broken down by hungry microbes and other natural processes. The outer layer of exoskeleton is composed of a fibrous weave of chitin, a polysaccharide rich in nitrogen, embedded in a matrix of structural proteins.

The scientists found the molecular signature of this material in a 417-million-year-old eurypterid fossil, an extinct arthropod that resembles an enormous . Some eurypterid species measured six feet long. They also found chitin-protein complex in a 310-million-year-old scorpion fossil. Previously, the oldest evidence of chitin dates to 25-million-year-old fossils.

“It turns out that vestiges of chitin and structural protein are abundant in much older fossils than we thought. Who knows what other surprises we’ll find when we search for organic material in even older fossils,” says Cody, the lead author of an article on this research that was recently published online by the journal Geology.

Scientists have used mass spectrometry to detect chitin in fossils from the Cenozoic era, which spans from today to when the dinosaurs became extinct 65 million years ago. But the trail grows cold further back in time. Analyses of shrimp, eurypterid, and scorpion fossils dating from the Paleozoic era, which spans from 542 to 251 million years ago, failed to uncover evidence of chitin. This led scientists to conclude that fossilized chitin is whittled away to nothing by millions of years of degradation.

Cody’s team tried a new approach to hunt for chitin-protein complex. They turned to beamline 5.3.2 of the Advanced Light Source, a national user facility that generates intense x-rays to probe the fundamental properties of substances.

The beamline boasts a state-of-the-art scanning transmission x-ray microscope that can produce nanoscale images of materials. It can also perform an analytic technique, called x-ray absorption near edge structure spectroscopy, which identifies atoms of individual elements, within their molecular framework, by probing their electrons at distinctive energies. Beamline 5.3.2 is specially tuned to detect carbon, nitrogen, and oxygen atoms.

The beamline instrumentation was developed by Berkeley Lab’s David Kilcoyne, who previously teamed up with Cody to catalog the chemical makeup of meteorites and comet dust. Other scientists have used the beamline to explore the characteristics of carbon nanotubes and study air pollution samples, among many applications.

In this research, Cody and Kilcoyne studied the remains of two Paleozoic arthropods: a scorpion unearthed in a cave in northern Illinois, and a eurypterid plucked from a quarry in Ontario, Canada. In both fossils, x-ray absorption near edge structure analyses revealed that much of the carbon, nitrogen, and oxygen detected in the exoskeleton are from chitin-protein complex.

“The microscope at the Advanced Light Source is the star in this research,” says Cody. “It opens up new ways of conducting molecular paleontology research.”

Cody believes the preservation of chitin-protein residues in extremely old fossils likely depends on the build up of fatty acids on a scaffold of chitin-protein molecules. This layer saves the remaining matrix of chitin and proteins from degradation by microorganisms even after 500 million years.

Explore further: Earliest ancestor of land herbivores discovered

More information: “Molecular signature of chitin-protein complex in Paleozoic arthropods” is published online Feb. 3 by the journal Geology.

add to favorites email to friend print save as pdf

Related Stories

Effective Imitation: New chitinase inhibitors

Mar 08, 2010

(PhysOrg.com) -- The chitin-degrading enzymes known as chitinases are not just important to insects with chitin shells and to their predators, they also seem to be involved in the establishment of parasites in the human body ...

Scientists Plot Genetic Ploy Against Grain Pest

Nov 03, 2009

(PhysOrg.com) -- Aided by a genomic map of the red flour beetle, Tribolium castaneum, Agricultural Research Service (ARS) and university scientists are plotting a kind of genetic sabotage on the pest’s basic ...

Recommended for you

Clippers and coiners in 16th-century England

Apr 14, 2014

In 2017 a new £1 coin will appear in our pockets with a design extremely difficult to forge. In the mid-16th century, Elizabeth I's government came up with a series of measures to deter "divers evil persons" ...

User comments : 0

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...