Scientists synthesize long-sought-after anticancer agent

Jan 31, 2011

A team of Yale University scientists has synthesized for the first time a chemical compound called lomaiviticin aglycon, leading to the development of a new class of molecules that appear to target and destroy cancer stem cells.

Chemists worldwide have been interested in lomaiviticin's potential anticancer properties since its discovery in 2001. But so far, they have been unable to obtain significant quantities of the compound, which is produced by a rare marine bacterium that cannot be easily coaxed into creating the molecule. For the past decade, different groups around the world have been trying instead to synthesize the in the lab, but without success.

Now a team at Yale, led by chemist Seth Herzon, has managed to create lomaiviticin aglycon for the first time, opening up new avenues of exploration into novel chemotherapies that could target cancer stem cells, thought to be the precursors to tumors in a number of different cancers including ovarian, brain, lung, prostate and leukemia. Their discovery appears online today in the .

"About three quarters of anticancer agents are derived from natural products, so there's been lots of work in this area," Herzon said. "But this compound is structurally very different from other natural products, which made it extremely difficult to synthesize in the lab."

In addition to lomaiviticin aglycon, Herzon's team also created smaller, similar molecules that have proven extremely effective in killing ovarian stem cells, said Gil Mor, M.D., a researcher at the Yale School of Medicine who is collaborating with Herzon to test the new class of molecules' potential as a cancer therapeutic.

The scientists are particularly excited about lomaiviticin aglycon's potential to kill ovarian cancer stem cells because the disease is notoriously resistant to and , two of the most common . " has a high rate of recurrence, and after using chemotherapy to fight the tumor the first time, you're left with resistant tumor cells that tend to keep coming back," Mor explained. "If you can kill the stem cells before they have the chance to form a tumor, the patient will have a much better chance of survival – and there aren't many potential therapies out there that target cancer stem cells right now."

Herzon's team, which managed to synthesize the molecule in just 11 steps starting from basic chemical building blocks, has been working on the problem since 2008 and spent more than a year on just one step of the process involving the creation of a carbon-carbon bond. It was an achievement that many researchers deemed impossible, but while others tried to work around having to create that bond by using other techniques, the team's persistence paid off.

"A lot of blood, sweat and tears went into creating that bond," Herzon said. "After that, the rest of the process was relatively easy."

Next, the team will continue to analyze the compound to better understand what's happening to the at the molecular level. The team hopes to begin testing the compounds in animals shortly.

"This is a great example of the synergy between basic chemistry and the applied sciences," Herzon said. "Our original goal of synthesizing this natural product has led us into entirely new directions that could have broad impacts in human medicine."

Explore further: Four billion-year-old chemistry in cells today

More information: DOI:10.1021/ja200034b

Related Stories

Ovarian cancer stem cells identified, characterized

Apr 17, 2008

Researchers at Yale School of Medicine have identified, characterized and cloned ovarian cancer stem cells and have shown that these stem cells may be the source of ovarian cancer’s recurrence and its resistance to chemotherapy.

Scientists isolate cancer stem cells

Sep 11, 2008

After years of working toward this goal, scientists at the OU Cancer Institute have found a way to isolate cancer stem cells in tumors so they can target the cells and kill them, keeping cancer from returning.

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

User comments : 0