Plasmonic metamaterials: From microscopes to invisibility cloaks

Jan 21, 2011
Credit: Caltech/Stanley Burgos

(PhysOrg.com) -- A new class of artificial materials called metamaterials -- which derive their properties from carefully engineered, nanostructured building blocks rather than from their chemical composition -- may one day be used to create ultrapowerful microscopes, advanced sensors, improved solar cells, computers that use light instead of electronic signals to process information, and even an invisibility cloak.

In a Perspectives piece in this week's issue of the journal Science, Caltech's Harry Atwater and Purdue University colleague Alexandra Boltasseva describe advances in a particular subtype of these materials—plasmonic metamaterials. They also describe two of the major limitations in the field: the loss of light or, rather, its absorption by metals such as silver and gold, which are contained in the metamaterial; and difficulties in precisely tuning the materials so they bend incoming light to the required index of refraction.

In their article, Atwater and Boltasseva suggest new approaches to overcoming these obstacles by replacing the silver and gold in the metamaterials with semiconductors made more metallic by the addition of metallic impurities, or by adding non-metallic elements to metals, making them less metallic. Examples of these "intermetallic materials" include aluminum oxides and titanium nitride.

Some of the new , the researchers say, are showing promise in uses involving near-infrared light, the range of the spectrum critical for telecommunications and fiber optics. Other materials—such as the negative-index metamaterial developed by Atwater and Caltech graduate student Stanley Burgos and described in an April 2010 Nature Materials article—might even work with light in the visible range of the spectrum.

Future photonics technologies will revolve around new types of optical transistors, switches, and data processors, Atwater and Boltasseva note. Indeed, as they point out in the article's abstract, "these materials can be tailored for almost any application because of their extraordinary response to electromagnetic, acoustic, and thermal waves that transcends the properties of natural materials."

Explore further: New complex oxides could advance memory devices

More information: www.sciencemag.org/content/331/6015/290.summary

Related Stories

Negative Index Materials: From Theory to Reality

Jun 06, 2006

Kent State University researchers are leading a team of scientists from eight institutions, who have been awarded a $5.5 million Multidisciplinary University Research Initiative (MURI) from the Air Force Office of Scientific ...

Beyond the looking glass...

Aug 13, 2009

While the researchers can't promise delivery to a parallel universe or a school for wizards, books like Pullman's Dark Materials and JK Rowling's Harry Potter are steps closer to reality now that researchers ...

Recommended for you

New complex oxides could advance memory devices

20 hours ago

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

Mechanical behavior of twinned aluminum revealed

Sep 15, 2014

A research group has discovered plasticity and work-hardening behaviors in twinned aluminum with incoherent twin boundaries by using in situ nanoindentation technique. The group's paper titled "In situ nanoindentation ...

Invisibility cloaks closer thanks to 'digital metamaterials'

Sep 15, 2014

The concept of "digital metamaterials" – a simple way of designing metamaterials with bizarre optical properties that could hasten the development of devices such as invisibility cloaks and superlenses – is reported in a paper published today in Nature ...

User comments : 0