Link between signaling molecules could point way to therapies for epilepsy, stroke, other diseases

Jan 07, 2011

In the Old West, camps sent smoke signals across distances to share key developments or strategy. Likewise, two important signaling molecules communicate across nerve cells to regulate electrical and chemical activity, neuroscientists from the UT Health Science Center San Antonio reported today.

The findings in rodent models have implications for potential future treatment of epilepsy, stroke and other problems, the researchers said.

"We now have novel targets for therapeutic intervention for a range of neurological and cardiovascular diseases, including stroke, epilepsy, dementia, hypertension, mental illness and others," said senior author Mark S. Shapiro, Ph.D., professor of physiology at the Health Science Center. "This study should guide clinicians and pharmaceutical companies in developing new therapies against mental, neurological, cardiovascular or cerebrovascular diseases that afflict many millions of people."

By isolating nerve cells from rats, the San Antonio team found a relationship between signaling enzymes called phosphoinositide kinases and calcium ions. Calcium transport and levels of calcium concentrations inside are extremely important for proper neurobiological function, Dr. Shapiro said.

In epilepsy, for example, it is thought that the hyper-excitability in the brain causes abnormal elevations of intracellular calcium ions, which is extremely toxic. Thus, often predispose people to additional seizures, as the normal regulation of increasingly breaks down.

The study is in the Jan. 7 issue of the .

Explore further: Treating pain by blocking the 'chili-pepper receptor'

Provided by University of Texas Health Science Center at San Antonio

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Studying altered brain cells sheds light on epilepsy

Apr 25, 2010

Neuroscience researchers have zeroed in on a novel mechanism that helps control the firing of electrical signals among neurons. By isolating the molecular and electrical events that occur when this control is disrupted, the ...

Possible link between different forms of epilepsy found

Jun 16, 2008

Carnegie Mellon University neuroscientists have identified what may be the first known common denominator underlying inherited and sporadic epilepsy — a disruption in an ion channel called the BK channel. Although BK channels ...

Calcium is spark of life, kiss of death for nerve cells

Mar 01, 2007

Oregon Health & Science University research shows how calcium regulates the recharging of high-frequency auditory nerve cells after they've fired a burst of signals, and it may have implications for neurological disorders.

Early treatment stops epilepsy in its tracks

Dec 13, 2007

Yale School of Medicine researchers have shown for the first time that it is possible to suppress the development of epilepsy in genetically predisposed animals—which could open the door to treating epilepsy ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

12 hours ago

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 0